[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Exploring Unknown Paths in Networks Based on Multiple Random Walks

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

Abstract

We study the problem of exploring unknown paths in networks through multiple random walks. It is assumed that a path is explored if it has been passed through by a random walker from the initial node to the terminal node continuously. We derive probability θ (t) that a given path in a network is explored by one or more random walkers in t steps on condition that there are many random walkers traveling on the network. Results show that more random walkers are better for exploring the path. The larger length l of the path is, the smaller θ (t) is. To explore paths with the same length in three kinds of networks, random walkers need least effort in SWW networks, most effort in BA networks and moderate effort in ER networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barabási, A.L.: Scale-Free Networks: A Decade and Beyond. Science 325, 412–413 (2009)

    Article  MathSciNet  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Song, C.M., Qu, Z.H., Blumm, N., Barabási, A.L.: Limits of Predictability in Human Mobility. Science 327, 1018–1021 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Song, C.M., Havlin, S., Hernán, A.M.: Self-similarity of complex networks. Nature 433, 392–395 (2005)

    Article  Google Scholar 

  5. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)

    Article  Google Scholar 

  6. Wang, D.S., Wen, Z., Tong, H.H., Lin, C.Y., Song, C.M., Barabási, A.L.: Information Spreading in Context. In: Proceeding for the 20th International World Wide Web Conference, pp. 1–10. ACM, Hyderabad (2011)

    Google Scholar 

  7. Wang, W.X., Yin, C.Y., Yan, G., Wang, B.H.: Integrating local static and dynamic information for routing traffic. Phys. Rev. E 74, 016101–016105 (2006)

    Article  Google Scholar 

  8. Yan, G., Zhou, T., Hu, B., Fu, Z.Q., Wang, B.H.: Efficient routing on complex networks. Phys. Rev. E 74, 046108–046112 (2006)

    Article  Google Scholar 

  9. Wu, Z.X., Wang, W.X., Yeung, K.H.: Traffic dynamics in scale-free networks with limited buffers and decongestion strategy. New J. Phys. 10, 023025 (2008)

    Google Scholar 

  10. Yang, R., Wang, W.X., Lai, Y.C., Chen, G.R.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112–026117 (2009)

    Google Scholar 

  11. Lee, S., Yook, S.H., Kim, Y.: Diffusive capture process on complex networks. Phys. Rev. E 74, 046118–046124 (2006)

    Google Scholar 

  12. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  13. Zhou, T., Liu, J.G., Bai, W.J., Chen, G., Wang, B.H.: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E 74, 056109–056114 (2006)

    Google Scholar 

  14. Yang, R., Zhou, T., Xie, Y.B., Lai, Y.C., Wang, B.H.: Optimal contact process on complex networks. Phys. Rev. E 78, 066109–066113 (2008)

    Google Scholar 

  15. Yang, R., Huang, L., Lai, Y.C.: Selectivity-based spreading dynamics on complex networks. Phys. Rev. E 78, 026111–026115 (2008)

    Google Scholar 

  16. Weiss, G.H.: Aspects and Applications of the Random Walk. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  17. Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  18. Noh, J.D., Rieger, H.: Random Walks on Complex Networks. Phys. Rev. Lett. 92, 118701–118704 (2004)

    Google Scholar 

  19. Zhang, Z.Z., Qi, Y., Zhou, S.G., Gao, S.Y., Guan, J.H.: Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees. Phys. Rev. E 81, 016114–016121 (2010)

    Google Scholar 

  20. Zhang, Z.Z., Wu, B., Zhang, H.J., Zhou, S.G., Guan, J.H., Wang, Z.G.: Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. Phys. Rev. E 81, 031118–031124 (2010)

    Google Scholar 

  21. Wang, S.P., Pei, W.J.: Detecting unknown paths on complex networks through random walks. Physica A 388, 514–522 (2009)

    Article  Google Scholar 

  22. Almaas, E., Kulkarni, R.V., Stroud, D.: Scaling properties of random walks on small-world networks. Phys. Rev. E 68, 056105–056110 (2003)

    Google Scholar 

  23. Feige, U.: A Tight Lower Bound on the Cover Time for Random Walks on Graphs. Random Structures and Algorithms 6(4), 433–438 (1995)

    Google Scholar 

  24. Kahn, J.D., Linial, N., Nisan, N., Saks, M.E.: On the cover time of random walks on graphs. Journal of Theoretical Probability 2(1), 121–128 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aldous, D.J.: Lower bounds for covering times for reversible Markov chains and random walks on graphs. Journal of Theoretical Probability 2(1), 91–100 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dolev, S., Schiller, E., Welch, J.L.: Random Walk for Self-Stabilizing Group Communication in Ad Hoc Networks. IEEE Transactions on Mobile Computing 5(7), 893–905 (2006)

    Article  Google Scholar 

  27. Tian, H., Shen, H., Matsuzawa, R.: Maximizing Networking Lifetime in Wireless Sensor Networks with Regular Topologies. In: Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Dalian, China, pp. 211–217 (2008)

    Google Scholar 

  28. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  30. Erdös, P., Rényi, A.: On random graphs. Publ. Math. 6, 290–297 (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pu, C., Yang, J., Miao, R., Pei, W. (2013). Exploring Unknown Paths in Networks Based on Multiple Random Walks. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics