Abstract
We study the problem of exploring unknown paths in networks through multiple random walks. It is assumed that a path is explored if it has been passed through by a random walker from the initial node to the terminal node continuously. We derive probability θ ′(t) that a given path in a network is explored by one or more random walkers in t steps on condition that there are many random walkers traveling on the network. Results show that more random walkers are better for exploring the path. The larger length l of the path is, the smaller θ ′(t) is. To explore paths with the same length in three kinds of networks, random walkers need least effort in SWW networks, most effort in BA networks and moderate effort in ER networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barabási, A.L.: Scale-Free Networks: A Decade and Beyond. Science 325, 412–413 (2009)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)
Song, C.M., Qu, Z.H., Blumm, N., Barabási, A.L.: Limits of Predictability in Human Mobility. Science 327, 1018–1021 (2010)
Song, C.M., Havlin, S., Hernán, A.M.: Self-similarity of complex networks. Nature 433, 392–395 (2005)
Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)
Wang, D.S., Wen, Z., Tong, H.H., Lin, C.Y., Song, C.M., Barabási, A.L.: Information Spreading in Context. In: Proceeding for the 20th International World Wide Web Conference, pp. 1–10. ACM, Hyderabad (2011)
Wang, W.X., Yin, C.Y., Yan, G., Wang, B.H.: Integrating local static and dynamic information for routing traffic. Phys. Rev. E 74, 016101–016105 (2006)
Yan, G., Zhou, T., Hu, B., Fu, Z.Q., Wang, B.H.: Efficient routing on complex networks. Phys. Rev. E 74, 046108–046112 (2006)
Wu, Z.X., Wang, W.X., Yeung, K.H.: Traffic dynamics in scale-free networks with limited buffers and decongestion strategy. New J. Phys. 10, 023025 (2008)
Yang, R., Wang, W.X., Lai, Y.C., Chen, G.R.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112–026117 (2009)
Lee, S., Yook, S.H., Kim, Y.: Diffusive capture process on complex networks. Phys. Rev. E 74, 046118–046124 (2006)
Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)
Zhou, T., Liu, J.G., Bai, W.J., Chen, G., Wang, B.H.: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E 74, 056109–056114 (2006)
Yang, R., Zhou, T., Xie, Y.B., Lai, Y.C., Wang, B.H.: Optimal contact process on complex networks. Phys. Rev. E 78, 066109–066113 (2008)
Yang, R., Huang, L., Lai, Y.C.: Selectivity-based spreading dynamics on complex networks. Phys. Rev. E 78, 026111–026115 (2008)
Weiss, G.H.: Aspects and Applications of the Random Walk. North-Holland, Amsterdam (1994)
Ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2004)
Noh, J.D., Rieger, H.: Random Walks on Complex Networks. Phys. Rev. Lett. 92, 118701–118704 (2004)
Zhang, Z.Z., Qi, Y., Zhou, S.G., Gao, S.Y., Guan, J.H.: Explicit determination of mean first-passage time for random walks on deterministic uniform recursive trees. Phys. Rev. E 81, 016114–016121 (2010)
Zhang, Z.Z., Wu, B., Zhang, H.J., Zhou, S.G., Guan, J.H., Wang, Z.G.: Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices. Phys. Rev. E 81, 031118–031124 (2010)
Wang, S.P., Pei, W.J.: Detecting unknown paths on complex networks through random walks. Physica A 388, 514–522 (2009)
Almaas, E., Kulkarni, R.V., Stroud, D.: Scaling properties of random walks on small-world networks. Phys. Rev. E 68, 056105–056110 (2003)
Feige, U.: A Tight Lower Bound on the Cover Time for Random Walks on Graphs. Random Structures and Algorithms 6(4), 433–438 (1995)
Kahn, J.D., Linial, N., Nisan, N., Saks, M.E.: On the cover time of random walks on graphs. Journal of Theoretical Probability 2(1), 121–128 (1989)
Aldous, D.J.: Lower bounds for covering times for reversible Markov chains and random walks on graphs. Journal of Theoretical Probability 2(1), 91–100 (1989)
Dolev, S., Schiller, E., Welch, J.L.: Random Walk for Self-Stabilizing Group Communication in Ad Hoc Networks. IEEE Transactions on Mobile Computing 5(7), 893–905 (2006)
Tian, H., Shen, H., Matsuzawa, R.: Maximizing Networking Lifetime in Wireless Sensor Networks with Regular Topologies. In: Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Dalian, China, pp. 211–217 (2008)
Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)
Erdös, P., Rényi, A.: On random graphs. Publ. Math. 6, 290–297 (1959)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pu, C., Yang, J., Miao, R., Pei, W. (2013). Exploring Unknown Paths in Networks Based on Multiple Random Walks. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-36669-7_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36668-0
Online ISBN: 978-3-642-36669-7
eBook Packages: Computer ScienceComputer Science (R0)