Abstract
We investigate searching efficiency of different kinds of random walk on complex networks which rely on local information and one-step memory. For the studied navigation strategies we obtained theoretical and numerical values for the graph mean first passage times as an indicator for the searching efficiency. The experiments with generated and real networks show that biasing based on inverse degree, persistence and local two-hop paths can lead to smaller searching times. Moreover, these biasing approaches can be combined to achieve a more robust random search strategy. Our findings can be applied in the modeling and solution of various real-world problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Austerweil, J., Abbott, J.T., Griffiths, T.: Human memory search as a random walk in a semantic network. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)
Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, pp. 635–644 (2011)
Basnarkov, L., Mirchev, M., Kocarev, L.: Persistent random search on complex networks. In: Trajanov, D., Bakeva, V. (eds.) ICT Innovations 2017. CCIS, vol. 778, pp. 102–111. Springer, Cham (2017)
Basnarkov, L., Mirchev, M., Kocarev, L.: Random walk with memory on complex networks. Phys. Rev. E 102(4), 042315 (2020)
Berenbrink, P., Cooper, C., Elsässer, R., Radzik, T., Sauerwald, T.: Speeding up random walks with neighborhood exploration. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1422–1435. SIAM (2010)
Bonaventura, M., Nicosia, V., Latora, V.: Characteristic times of biased random walks on complex networks. Phys. Rev. E 89(1), 012803 (2014)
Cao, X., Wang, Y., Li, C., Weng, T., Yang, H., Gu, C.: One-step memory random walk on complex networks: an efficient local navigation strategy. Fluct. Noise Lett. 20(05), 2150040 (2021)
Carletti, T., Battiston, F., Cencetti, G., Fanelli, D.: Random walks on hypergraphs. Phys. Rev. E 101(2), 022308 (2020)
Fronczak, A., Fronczak, P.: Biased random walks in complex networks: the role of local navigation rules. Phys. Rev. E 80(1), 016107 (2009)
Glonek, M., Tuke, J., Mitchell, L., Bean, N.: Semi-supervised graph labelling reveals increasing partisanship in the united states congress. Appl. Netw. Sci. 4(1), 1–18 (2019)
Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. Proc. Natl. Acad. Sci. 104(21), 8685–8690 (2007)
Grinstead, C.M., Snell, J.L.: Introduction to probability. American Mathematical Society (2012)
Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855-864. ACM (2016)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 177–187. ACM (2005)
Leskovec, J., Sosič, R.: Snap: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1–20 (2016)
Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)
Nikolentzos, G., Vazirgiannis, M.: Random walk graph neural networks. Adv. Neural Inf. Process. Syst. 33, 16211–16222 (2020)
Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92(11), 118701 (2004)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)
Patel, R., Carron, A., Bullo, F.: The hitting time of multiple random walks. SIAM J. Matrix Anal. Appl. 37(3), 933–954 (2016)
Riascos, A.P., Boyer, D., Herringer, P., Mateos, J.L.: Random walks on networks with stochastic resetting. Phys. Rev. E 101(6), 062147 (2020)
Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (2015). https://networkrepository.com/
Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 65–72. ACM (2019)
Seneta, E.: Non-negative Matrices and Markov Chains. Springer, Heidelberg (2006)
Šubelj, L., Bajec, M.: Robust network community detection using balanced propagation. Eur. Phys. J. B 81(3), 353–362 (2011)
Tejedor, V., Bénichou, O., Voituriez, R.: Global mean first-passage times of random walks on complex networks. Phys. Rev. E 80(6), 065104 (2009)
West, R., Leskovec, J.: Human wayfinding in information networks. In: Proceedings of the 21st International Conference on World Wide Web, pp. 619–628 (2012)
West, R., Pineau, J., Precup, D.: Wikispeedia: an online game for inferring semantic distances between concepts. In: 21st International Joint Conference on Artificial Intelligence (2009)
Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-2003), pp. 912–919 (2003)
Acknowledgement
This research was partially supported by the Faculty of Computer Science and Engineering, at the Ss. Cyril and Methodius University in Skopje, N. Macedonia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mirchev, M., Basnarkov, L., Mishkovski, I. (2023). Comparative Study of Random Walks with One-Step Memory on Complex Networks. In: Teixeira, A.S., Botta, F., Mendes, J.F., Menezes, R., Mangioni, G. (eds) Complex Networks XIV. CompleNet 2023. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-28276-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-28276-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28275-1
Online ISBN: 978-3-031-28276-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)