[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

The elucidation of biological networks regulating the metabolic basis of disease is critical for understanding disease progression and in identifying therapeutic targets. In molecular biology, this process often starts by clustering expression profiles which are candidates for disease phenotypes. However, each cluster may comprise several overlapping processes that are active in the cluster. This paper outlines empirical results using methods for blind source separation to map the pathways of biomarkers driving independent, hidden processes that underpin the clusters. The method is applied to a protein expression data set measured in tissue from breast cancer patients (n=1,076).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 32.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 41.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, H., Sun, Y., Zhan, M.: The Discovery of Transcriptional Modules by a Two-Stage Matrix Decomposition Approach. Bioinformatics 23(4), 473–479 (2007)

    Article  Google Scholar 

  2. Li, H., Zhan, M.: Unraveling Transcriptional Regulatory Programs by Integrative Analysis of Microarray and Transcription Factor Binding Data. Bioinformatics 24(7), 1874–1880 (2008)

    Article  MathSciNet  Google Scholar 

  3. Lutter, D., Ugocsai, P., Grandl, P., Orso, E., Theis, F., Lang, E.W., Schmitz, G.: Analyzing M-CSF Dependent Monocyte/Macrophage Differentiation: Expression Modes and Meta-Modes Derived from an Independent Component Analysis. BMC Bioinformatics 9, 100 (2008)

    Article  Google Scholar 

  4. Schwartz, R., Shackney, S.E.: Applying Unmixing to Gene Expression Data for Tumor Phylogeny Inference. BMC Bioinformatics 11, 42 (2010)

    Article  Google Scholar 

  5. Abd El-Rehim, D., Ball, G., Pinder, S., Rakha, E., Paish, C., Robertson, J., Macmillan, D., Blamey, R., Ellis, I.O.: High-Throughput Protein Expression Analysis Using Tissue Microarray Technology of a Large Well-Characterised Series Identifies Biologically Distinct Classes of Breast Cancer Confirming Recent cDNA Expression Aanalyses. Int. J. Cancer 116, 340–350 (2005)

    Article  Google Scholar 

  6. Soria, D., Garibaldi, J.M., Ambrogi, F., Green, A.R., Powe, D., Rakha, E., Douglas-Macmillan, R., Blamey, R.W., Ball, G., Lisboa, P.J.G., Etchells, T.A., Boracchi, P., Biganzoli, E., Ellis, I.O.: A Methodology to Identify Consensus Classes from Clustering Algorithms Applied to Immunohistochemical Data from Breast Cancer Patients. Comput. Biol. Med. 40, 318–330 (2010)

    Article  Google Scholar 

  7. Zhao, Y., Karypis, G., Fayyad, U.: Hierarchical Clustering Algorithms for Document Datasets. Data Min. Knowl. Disc. 10(2), 141–168 (2005)

    Article  Google Scholar 

  8. Jarman, I.H., Etchells, T.A., Bacciu, D., Garibaldi, J.M., Ellis, I.O., Lisboa, P.J.G.: Clustering of Protein Expression Data: A Benchmark of Statistical and Neural Approaches. Soft Computing: A Fusion of Foundations, Methodologies and Applications 15(8), 1459–1469 (2010)

    Google Scholar 

  9. Lisboa, P.J.G., Ellis, I.O., Green, A.R., Ambrogi, F., Dias, M.B.: Cluster-Based Visualisation with Scatter Matrices. Pattern Recogn. Lett. 29(13), 1814–1823 (2008)

    Article  Google Scholar 

  10. Paatero, P., Tapper, U.: Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  11. Lee, D.D., Seung, H.S.: Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  12. Ding, C., Li, T., Jordan, M.I.: Convex and Semi-Nonnegative Matrix Factorizations. IEEE T. Patt. Anal. 32(1), 45–55 (2010)

    Article  Google Scholar 

  13. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, New York (2000)

    Google Scholar 

  14. Goebel, B., Dawy, Z., Hagenauer, J., Mueller, J.: An Approximation to the Distribution of Finite Sample Size Mutual Information Estimates. In: IEEE International Conference on Communications, vol. 2, pp. 1102–1106. IEEE Press, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lisboa, P.J.G. et al. (2012). Discovering Hidden Pathways in Bioinformatics. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35686-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35685-8

  • Online ISBN: 978-3-642-35686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics