[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adaptive Rank Transform for Stereo Matching

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7102))

Included in the following conference series:

Abstract

Window selection is the main challenge for local stereo matching methods based on the rank transform and it involves two aspects : the rank window selection and the match window selection. Most recent methods only focus on how to select the match window but pay little attention to the selection of the rank window. In this paper, we propose a novel matching method based on adaptive rank transform. Differing with the existing rank-based matching methods, the proposed method can deal with the rank and match window selection at the same time. The experimental results are evaluated on the Middlebury dataset as well as real images, showing that our method performs better than the recent rank-based stereo matching methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  2. Yang, Q.X., Ahuja, N.: A constant-space belief propagation algorithm for stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1458–1465. IEEE Press, San Francisco (2010)

    Google Scholar 

  3. Cheng, L., Selzer, J.: Region-Tree based stereo using dynamic programming optimization. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 2378–2385. IEEE Press, New York (2006)

    Google Scholar 

  4. Srivastava, S., Seong, J.H.: Stereo matching using hierarchical belief propagation along ambiguity gradient. In: IEEE International Conference on Image Processing, vol. 36(2), pp. 2085–2088. IEEE Press, Cairo (2009)

    Google Scholar 

  5. Vanetti, M., Gallo, I., Elisabeta, B.: Dense two-frame stereo correspondence by self-orgnazing neural network. In: Internation Conference on Image Analysis and Processing, vol. 2, pp. 456–489 (2009)

    Google Scholar 

  6. Yoon, K.J., Kweon, I.J.: Adaptive support-weight approach for correspondence search. IEEE Transaction on Pattern Analysis and Machine Intelligence 28(4), 650–656 (2006)

    Article  Google Scholar 

  7. Guie, L., Yang, X.R., Qi, X.: Fast stereo matching algorithm using adaptive window. In: International Symposiums on Information Processing, pp. 25–30. IEEE Press, New York (2008)

    Google Scholar 

  8. Zhang, Z., Zhang, M.: Fast stereo matching algorithm based on adaptive window. In: International Conference on Audio Language and Image Processing, pp. 138–143 (2010)

    Google Scholar 

  9. Zabih, R., Woodfill, L.J.: Non-Parametric Local Transforms for Computing Visual Correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  10. Banks, J., Bennamoun, M.: Reliability analysis of the rank transform for stereo matching. IEEE Transactions on Systems, Man, and Cybernetics 31(6), 870–880 (2001)

    Article  Google Scholar 

  11. Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(9), 1582–1599 (2009)

    Article  Google Scholar 

  12. Ambrosch, K., Humenberger, M.: Extending two non-parametric transforms for FPGA based stereo matching using bayer filtered cameras. In: Computer Vision and Pattern Recognition Workshops, vol. 1, pp. 1–8. IEEE Press, Anchorage (2008)

    Google Scholar 

  13. Wang, K.: Adaptive stereo matching algorithm based on edge detection. In: IEEE International Conference on Image Processing, vol. 1, pp. 1345–1348. IEEE Press, Singapore (2004)

    Google Scholar 

  14. Zheng, G., Su, X.Y., Liu, Y.K.: Local stereo matching with adaptive support weight, rank transform and diaparity calibration. Pattern Recognition Letters 29(1), 1230–1235 (2008)

    Google Scholar 

  15. Veksler, O.: Stereo Matching by compact windows via minimum radio cycle. In: International Conference on Computer Vision, vol. 1, pp. 540–547 (2001)

    Google Scholar 

  16. Scharstein, D., Szeliski, R.: Middlebury Stereo Vision Page (2008), http://vision.middlebury.edu/stereo/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, G., Du, Y., Tang, Y. (2011). Adaptive Rank Transform for Stereo Matching. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25489-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25488-8

  • Online ISBN: 978-3-642-25489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics