Abstract
This paper explores an indirect approach to the Three- dimensional Multi-pipe Routing problem. Variable length pipelines are built by letting a virtual robot called a turtle navigate through space, leaving pipe segments along its route. The turtle senses its environment and acts in accordance with commands received from heuristics currently under evaluation. The heuristics are evolved by a Gene Expression Programming based Learning Classifier System. The suggested approach is compared to earlier studies using a direct encoding, where command lines were evolved directly by genetic algorithms. Heuristics generating higher quality pipelines are evolved by fewer generations compared to the direct approach, however the evaluation time is longer and the search space is more complex. The best evolved heuristic is short and simple, builds modular solutions, exhibits some degree of generalization and demonstrates good scalability on test cases similar to the training case.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eiben, A., Schoenauer, M.: Evolutionary computing. Arxiv preprint cs/0511004 (2005)
Stanley, K., Miikkulainen, R.: A Taxonomy for Artificial Embryogeny. Artificial Life 9(2), 93–130 (2003)
Norvig, P., Russell, S.: Artificial intelligence: a modern approach. Prentice-Hall, Englewood Cliffs (2003)
Ito, T.: A genetic algorithm approach to piping route path planning. Journal of Intelligent Manufacturing 10(1), 103–114 (1999)
Ito, T.: Route Planning Wizard: Basic Concept and Its Implementation. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS (LNAI), vol. 2358, pp. 547–556. Springer, Heidelberg (2002)
Soltani, A., Tawfik, H., Goulermas, J., Fernando, T.: Path planning in construction sites: performance evaluation of the Dijkstra, A*, and GA search algorithms. Advanced Engineering Informatics 16(4), 291–303 (2002)
Kim, D., Corne, D., Ross, P.: Industrial plant pipe-route optimisation with genetic algorithms. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 1012–1021. Springer, Heidelberg (1996)
Fan, J., Ma, M., Yang, X.: Path Planning in Pipe System Based on Coevolution[for aero-engines]. Hangkong Dongli Xuebao/Journal of Aerospace Power 19(5), 593–597 (2004)
Zhu, D., Latombe, J.: Pipe routing-path planning (with many constraints). In: Proceedings of 1991 IEEE International Conference on Robotics and Automation, pp. 1940–1947 (1991)
Sandurkar, S., Chen, W.: GAPRUSgenetic algorithms based pipe routing using tessellated objects. Computers in Industry 38(3), 209–223 (1999)
Wang, H., Zhao, C., Yan, W., Feng, X.: Three-dimensional Multi-pipe Route Optimization Based on Genetic Algorithms. International Federation for Information Processing-publications-IFIP 207, 177 (2006)
Park, J., Storch, R.: Pipe-routing algorithm development: case study of a ship engine room design. Expert Systems with Applications 23(3), 299–309 (2002)
Burke, E., Hyde, M., Kendall, G.: Evolving bin packing heuristics with genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, p. 860. Springer, Heidelberg (2006)
Burke, E., Hyde, M., Kendall, G., Woodward, J.: A genetic programming hyper-heuristic approach for evolving two dimensional strip packing heuristics. Technical report, Technical report, University of Nottingham, Dept. of Computer Science (2008)
Allen, S., Burke, E., Hyde, M., Kendall, G.: Evolving reusable 3d packing heuristics with genetic programming. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 931–938. ACM, New York (2009)
Furuholmen, M., Glette, K., Hovin, M., Torresen, J.: Coevolving Heuristics for The Distributors Pallet Packing Problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (2009)
Tay, J., Ho, N.: Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering 54(3), 453–473 (2008)
Dimopoulos, C., Zalzala, A.: Investigating the use of genetic programming for a classic one-machine scheduling problem. Advances in Engineering Software 32(6), 489–498 (2001)
Jakobovic, D., Budin, L.: Dynamic Scheduling with Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, p. 73. Springer, Heidelberg (2006)
Furuholmen, M., Glette, K., Hovin, M., Torresen, J.: Scalability, generalization and coevolution–experimental comparisons applied to automated facility layout planning. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 691–698. ACM, New York (2009)
Floreano, D., Nolfi, S.: Evolutionary Robotics. Springer Handbook of Robotics (2008)
Lee, W., Hallam, J., Lund, H.: Applying genetic programming to evolve behavior primitives andarbitrators for mobile robots. In: IEEE International Conference on Evolutionary Computation 1997, pp. 501–506 (1997)
Ebner, M.: Evolution of a control architecture for a mobile robot. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 303–310. Springer, Heidelberg (1998)
Koza, J.: Evolution of subsumption using genetic programming. In: Toward a Practice of Autonomous Systems, Proceedings of the First European Conference on Artificial Life, pp. 110–119. MIT, Cambridge (1992)
Furuholmen, M., Hovin, M., Torresen, J., Glette, K.: Continuous Adaptation in Robotic Systems by Indirect Online Evolution. In: Proceedings of Learning and Adaptive Behaviors for Robotic Systems, Lab-Rs 2008, Edinburgh, United Kingdom, August 6-8 (2008)
Furuholmen, M., Glette, K., Torresen, J., Hovin, M.: Indirect Online Evolution - A Conceptual Framework for Adaptation in industrial Robotic Systems. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 165–176. Springer, Heidelberg (2008)
Hornby, G., Lipson, H., Pollack, J.: Generative representations for the automated design of modular physical robots. IEEE Transactions on Robotics and Automation 19(4), 703–719 (2003)
Kowaliw, T., Grogono, P., Kharma, N.: The evolution of structural design through artificial embryogeny. In: Proceedings of the IEEE First International Symposium on Artificial Life (2007)
Abelson, H., Disessa, A.: Turtle geometry: The computer as a medium for exploring mathematics. The MIT Press, Cambridge (1986)
Holland, J., Reitman, J.: Cognitive systems based on adaptive algorithms. ACM SIGART Bulletin 49 (1977)
Dorigo, M., Schnepf, U.: Genetics-based machine learning and behavior-based robotics: a new synthesis. IEEE Transactions on Systems Man and Cybernetics 23(1), 141–154 (1993)
Wilson, S.: Classifier conditions using gene expression programming. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V., Kovacs, T., Llorà, X., Takadama, K. (eds.) IWLCS 2006 and IWLCS 2007. LNCS (LNAI), vol. 4998, pp. 206–217. Springer, Heidelberg (2008)
Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Arxiv preprint cs.AI/0102027 (2001)
Nordin, P., Banzhaf, W., Brameier, M., et al.: Evolution of a world model for a miniature robot using genetic programming. Robotics and Autonomous Systems 25(1), 105–116 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Furuholmen, M., Glette, K., Hovin, M., Torresen, J. (2010). An Indirect Approach to the Three-Dimensional Multi-pipe Routing Problem. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds) Genetic Programming. EuroGP 2010. Lecture Notes in Computer Science, vol 6021. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12148-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-12148-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12147-0
Online ISBN: 978-3-642-12148-7
eBook Packages: Computer ScienceComputer Science (R0)