[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Indirect Online Evolution – A Conceptual Framework for Adaptation in Industrial Robotic Systems

  • Conference paper
Evolvable Systems: From Biology to Hardware (ICES 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5216))

Included in the following conference series:

Abstract

A conceptual framework for online evolution in robotic systems called Indirect Online Evolution (IDOE) is presented. A model specie automatically infers models of a physical system and a parameter specie simultaneously optimizes the parameters of the inferred models according to a specified target behavior. Training vectors required for modelling are automatically provided online by the interplay between the two coevolving species and the physical system. At every generation, only the estimated fittest individual of the parameter specie is executed on the physical system, hence limiting both the evaluation time, the wear out and the potential hazards normally associated with direct online evolution (DOE), where every candidate solution has to be evaluated on the physical system. Features of IDOE are demonstrated by inferring models of a simple hidden system containing geometric shapes that are further optimized according to a target value. Simulated experiments indicate that the fitness of the IDOE approach is generally higher than the average fitness of DOE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D., et al.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  2. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Banzhaf, W.: Genetic Programming: An Introduction on the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann, San Francisco (1998)

    MATH  Google Scholar 

  4. Fleming, P., Purshouse, R.: Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice 10(11), 1223–1241 (2002)

    Article  Google Scholar 

  5. Hart, E., Ross, P., Corne, D.: Evolutionary Scheduling: A Review. Genetic Programming and Evolvable Machines 6(2), 191–220 (2005)

    Article  Google Scholar 

  6. Oduguwa, V., Tiwari, A., Roy, R.: Evolutionary computing in manufacturing industry: an overview of recent applications. Applied Soft Computing Journal 5(3), 281–299 (2005)

    Article  Google Scholar 

  7. Kicinger, R., Arciszewski, T., Jong, K.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005)

    Article  Google Scholar 

  8. Brooks, R.: Intelligence without representation. Foundations of Artificial Intelligence 47, 139–159 (1992)

    Google Scholar 

  9. Arkin, R.: Behavior-Based Robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Floreano, D., Nolfi, S.: Evolutionary Robotics. In: Springer Handbook of Robotics (2008)

    Google Scholar 

  11. Stoica, A., Zebulum, R., Keymeulen, O.: Mixtrinsic Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 208–217. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Bongard, J., Lipson, H.: Nonlinear System Identification Using Coevolution of Models and Tests. IEEE Transactions on Evolutionary Computation 9(4), 361–384 (2005)

    Article  Google Scholar 

  13. Bongard, J., Zykov, V., Lipson, H.: Resilient Machines Through Continuous Self-Modeling (2006)

    Google Scholar 

  14. Ferreira, C.: Gene Expression Programming: a New Adaptive Algorithm for Solving Problems. Arxiv preprint cs.AI/0102027 (2001)

    Google Scholar 

  15. Ferreira, C.: Combinatorial Optimization by Gene Expression Programming: Inversion Revisited. In: Proceedings of the Argentine Symposium on Artificial Intelligence, pp. 160–174 (2002)

    Google Scholar 

  16. Zhou, C., Xiao, W., Tirpak, T., Nelson, P.: Evolving accurate and compact classification rules with gene expression programming. IEEE Transactions on Evolutionary Computation 7(6), 519–531 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Furuholmen, M., Glette, K., Torresen, J., Hovin, M. (2008). Indirect Online Evolution – A Conceptual Framework for Adaptation in Industrial Robotic Systems. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds) Evolvable Systems: From Biology to Hardware. ICES 2008. Lecture Notes in Computer Science, vol 5216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85857-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85857-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85856-0

  • Online ISBN: 978-3-540-85857-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics