Abstract
The design of image-based soft-biometrics systems highly depends on the human factor analysis. How well can human do in gender/ethnicity recognition by looking at faces in different representations? How does human recognize gender/ethnicity? What factors affect the accuracy of gender/ethnicity recognition? The answers of these questions may inspire our design of computer-based automatic gender/ethnicity recognition algorithms. In this work, several subjective experiments are conducted to test the capability of human in gender/ethnicity recognition on different face representations, including 1D face silhouette, 2D face images and 3D face models. Our experimental results provide baselines and interesting inspirations for designing computer-based face gender/ethnicity recognition algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bruce, V., Burton, A.M., Hanna, E., Healey, P., Mason, O., Coombes, A., Fright, R., Linney, A.: Sex discrimination: how do we tell the difference between male and female faces? Perception 22, 131–152 (1993)
Hill, H., Bruce, V., Akamatsu, S.: Perceiving the sex and race of faces: The role of shape and color. Proc. of the Royal Society - Biological Sciences (Series B) 261, 367–373 (1995)
The main differences between male and female faces, http://www.virtualffs.co.uk/male.femalefacialdifferences.htm
Cottrell, G., Metcalfe, J.: EMPATH: Face, Gender and Emotion Recognition using Holons. In: Proceedings of Advances in Neural Information Processing Systems, pp. 564–571 (1990)
Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: Sexnet: a neural network identifies sex from human faces. In: Lipmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Proc. of NIPS, vol. 3, pp. 572–577. Morgan Kaufmann, San Mateo (1990)
Abdi, H., Valentin, D., Edelman, B., O’Toole, A.: More about the difference between men and women: evidence from linear neural networks and the principal component approach. Perception 24, 539–562 (1995)
Gutta, S., Weschler, H., Phillips, P.J.: Gender and Ethnic Classification of Human Faces using Hybrid Classifiers. In: Proc. of IEEE Conf. on AFGR, pp. 194–199 (1998)
Tamura, S.H., Kawai, M.H.: Male/Female Identification from 8 x 6 Very Low Resolution Face Images by Neural Network. Pattern Recognition 29, 331–335 (1996)
O’Toole, A., Abdi, H., Deffenbacher, K., Valentin, D.: A low-dimensional representation of faces in higher dimensions of space. J. of Optical Society of America 10, 405–411 (1993)
Jain, A., Huang, J., Fang, S.: Gender identification using frontal facial images. In: Proc. of IEEE International Conference on Multimedia and Expo., pp. 1082–1085 (2005)
Yin, L., Jia, J., Morrissey, J.: Towards race-related face identification: Research on skin color transfer. In: Proc. of IEEE Conf. on AFGR, pp. 362–368 (2004)
Hu, Y., Zhang, Z., Xu, X., Fu, Y., Huang, T.S.: Building Large Scale 3D Face Database for Face Analysis. In: Sebe, N., Liu, Y., Zhuang, Y.-t., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 343–350. Springer, Heidelberg (2007)
Davidenko, N.: Silhouetted face profiles: A new methodology for face perception research. Journal of Vision 7, 1–17 (2007)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hu, Y., Fu, Y., Tariq, U., Huang, T.S. (2010). Subjective Experiments on Gender and Ethnicity Recognition from Different Face Representations. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-11301-7_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11300-0
Online ISBN: 978-3-642-11301-7
eBook Packages: Computer ScienceComputer Science (R0)