[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Subjective Experiments on Gender and Ethnicity Recognition from Different Face Representations

  • Conference paper
Advances in Multimedia Modeling (MMM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5916))

Included in the following conference series:

Abstract

The design of image-based soft-biometrics systems highly depends on the human factor analysis. How well can human do in gender/ethnicity recognition by looking at faces in different representations? How does human recognize gender/ethnicity? What factors affect the accuracy of gender/ethnicity recognition? The answers of these questions may inspire our design of computer-based automatic gender/ethnicity recognition algorithms. In this work, several subjective experiments are conducted to test the capability of human in gender/ethnicity recognition on different face representations, including 1D face silhouette, 2D face images and 3D face models. Our experimental results provide baselines and interesting inspirations for designing computer-based face gender/ethnicity recognition algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruce, V., Burton, A.M., Hanna, E., Healey, P., Mason, O., Coombes, A., Fright, R., Linney, A.: Sex discrimination: how do we tell the difference between male and female faces? Perception 22, 131–152 (1993)

    Article  Google Scholar 

  2. Hill, H., Bruce, V., Akamatsu, S.: Perceiving the sex and race of faces: The role of shape and color. Proc. of the Royal Society - Biological Sciences (Series B) 261, 367–373 (1995)

    Article  Google Scholar 

  3. The main differences between male and female faces, http://www.virtualffs.co.uk/male.femalefacialdifferences.htm

  4. Cottrell, G., Metcalfe, J.: EMPATH: Face, Gender and Emotion Recognition using Holons. In: Proceedings of Advances in Neural Information Processing Systems, pp. 564–571 (1990)

    Google Scholar 

  5. Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: Sexnet: a neural network identifies sex from human faces. In: Lipmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Proc. of NIPS, vol. 3, pp. 572–577. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  6. Abdi, H., Valentin, D., Edelman, B., O’Toole, A.: More about the difference between men and women: evidence from linear neural networks and the principal component approach. Perception 24, 539–562 (1995)

    Article  Google Scholar 

  7. Gutta, S., Weschler, H., Phillips, P.J.: Gender and Ethnic Classification of Human Faces using Hybrid Classifiers. In: Proc. of IEEE Conf. on AFGR, pp. 194–199 (1998)

    Google Scholar 

  8. Tamura, S.H., Kawai, M.H.: Male/Female Identification from 8 x 6 Very Low Resolution Face Images by Neural Network. Pattern Recognition 29, 331–335 (1996)

    Article  Google Scholar 

  9. O’Toole, A., Abdi, H., Deffenbacher, K., Valentin, D.: A low-dimensional representation of faces in higher dimensions of space. J. of Optical Society of America 10, 405–411 (1993)

    Article  Google Scholar 

  10. Jain, A., Huang, J., Fang, S.: Gender identification using frontal facial images. In: Proc. of IEEE International Conference on Multimedia and Expo., pp. 1082–1085 (2005)

    Google Scholar 

  11. Yin, L., Jia, J., Morrissey, J.: Towards race-related face identification: Research on skin color transfer. In: Proc. of IEEE Conf. on AFGR, pp. 362–368 (2004)

    Google Scholar 

  12. Hu, Y., Zhang, Z., Xu, X., Fu, Y., Huang, T.S.: Building Large Scale 3D Face Database for Face Analysis. In: Sebe, N., Liu, Y., Zhuang, Y.-t., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 343–350. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Davidenko, N.: Silhouetted face profiles: A new methodology for face perception research. Journal of Vision 7, 1–17 (2007)

    Article  Google Scholar 

  14. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, Y., Fu, Y., Tariq, U., Huang, T.S. (2010). Subjective Experiments on Gender and Ethnicity Recognition from Different Face Representations. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, YP.P. (eds) Advances in Multimedia Modeling. MMM 2010. Lecture Notes in Computer Science, vol 5916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11301-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11301-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11300-0

  • Online ISBN: 978-3-642-11301-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics