Abstract
This paper seeks to improve gender classification accuracy by fusing shape features, the Active Shape Model with the two appearance based methods, the Local Binary Pattern (LBP) and Local Directional Pattern (LDP). A gender classification model based on the fusion of appearance and shape features is proposed. The experimental results show that the fusion of the LBP and LDP with the Active Shape Model improved the gender classification accuracy rate to 94.5% from 92.8% before fusion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. Proc. Mach. Learn. Res. 81, 1–15 (2018)
Cheung, Y.-m., Deng, J.: Ultra local binary pattern for image texture analysis. In: Secutrity, Pattern Analysis and Cybernetics (2014)
Angulu, R., Tapamo, J., Adewum, A.: Human age estimation using multifrequency biologically inspired features (mf-bif). In: IEEE AFRICON 2017 (2017)
Wang, Wei, He, Feixiang, Zhao, Qijun: Facial ethnicity classification with deep convolutional neural networks. In: You, Zhisheng, Zhou, Jie, Wang, Yunhong, Sun, Zhenan, Shan, Shiguang, Zheng, Weishi, Feng, Jianjiang, Zhao, Qijun (eds.) CCBR 2016. LNCS, vol. 9967, pp. 176–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46654-5_20
Boyseens, A., Viriri, S.: Component-based ethnicity identification from facial images. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 293–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46418-3_26
Luoh, L., Huang, C.: International coriference on system science and engineering image processing based emotion recognition. In: 2010 International Coriference on System Science and Engineering (2010)
Jain, A.K., Dass, S.C., Nandakumar, K.: Soft biometric traits for personal recognition systems. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 731–738. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25948-0_99
Hoffmeyer-Zlotnik, J.H.P., Wolf, C. (eds.): Advances in Cross-National Comparison A European Working Book for Demographic and Socio-Economic Variables. Springer, New York (2003). https://doi.org/10.1007/978-1-4419-9186-7
Yu, S., Tan, T., Huang, K., Jia, K., Wu, X.: A study on gait-based gender classification. IEEE Trans. Image Process. 18(8) (2008)
Yang, W., Chen, C., Ricanek, K., Sun, C.: Gender classification via global-local features fusion. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 214–220. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25449-9_27
Mozaffari, S., Behravan, H., Akbari, R.: Gender classification using single frontal image per person: combination of appearance and geometric based features. In: 20th International Conference on Pattern Recognition, ICPR 2010 (2010)
Chumerin, N., Hulle, M.M.V.: Comparison of two feature extraction methods based on maximization of mutual information. In: 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing (2006)
Lian, X.-C., Lu, B.-L.: Gender classification by combining facial and hair information. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 647–654. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03040-6_79
Ziyi Xu, L.L., Shi, P.: A hybrid approach to gender classification from face images. In: 2008 IEEE (2008)
Lapedriza, A., Masip, D., Vitria, J.: Are external face features useful for automatic face classification? In: CVPR 2005, vol. 3, pp. 151–157 (2005)
Cao, L., Dikmen, M., Fu, Y.: Gender recognition from body. In: MM 08 Proceedings of the 16th ACM International Conference on Multimedi (2008)
Jabid, K.M., Chae, O.: Local directional pattern for face recognition. In: International Conference on Consumer Electronics (2010)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape modelstheir training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054760
Lakshmiprabha, N.: Face image analysis using AAM, Gabor, LBP and WD features for gender age, expression and ethnicity classification. Comput. Vis. Pattern Recognit. (cs.CV) (2016)
Viola, P., Jones, M.: Robust real-time object detection. In: Second International Workshop on Statistical and Computational Theories of Vision-Modelling, Learning, Computing and Sampling (2001)
Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1) (2002)
Jabid, T., Kabir, H., Chae, O.: Robust facial expression recognition based on local directional pattern. ETRI J. (2010)
Cootes, T., Edwards, G., Taylor, C.: Comparing active shape models with active appearance models. In: British Machine Vision (1999)
Xu, Z., Lu, L., Shi, P.: A hybrid approach to gender classification from face images. In: 2008 19th International Conference on Pattern Recognition (2008)
Jadhao, V., Holambe, R.S.: Feature extraction and dimensionality reduction using radon and fourier transforms with application to face recognition. In: Conference on Computational Intelligence and Multimedia Applications (2007)
Pang, Y., Yuan, Y., Li, X.: Effective feature extraction in a high dimensinal space. IEEE Trans. Syst. (2008)
Yang, M.H., Moghaddam, B.: Support vector machines for visual gender classification. In: Proceedings 15th International Conference on Pattern Recognition, ICPR-2000 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bayana, M.H., Viriri, S., Angulu, R. (2018). Gender Classification Based on Facial Shape and Texture Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2018. Lecture Notes in Computer Science(), vol 11241. Springer, Cham. https://doi.org/10.1007/978-3-030-03801-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-03801-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03800-7
Online ISBN: 978-3-030-03801-4
eBook Packages: Computer ScienceComputer Science (R0)