[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Descriptor Learning Based on Fisher Separation Criterion for Texture Classification

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Included in the following conference series:

  • 3171 Accesses

Abstract

This paper proposes a novel method to deal with the representation issue in texture classification. A learning framework of image descriptor is designed based on the Fisher separation criteria (FSC) to learn most reliable and robust dominant pattern types considering intra-class similarity and inter-class distance. Image structures are thus be described by a new FSC-based learning (FBL) encoding method. Unlike previous handcraft-design encoding methods, such as the LBP and SIFT, supervised learning approach is used to learn an encoder from training samples. We find that such a learning technique can largely improve the discriminative ability and automatically achieve a good tradeoff between discriminative power and efficiency. The commonly used texture descriptor: local binary pattern (LBP) is taken as an example in the paper, so that we then proposed the FBL-LBP descriptor. We benchmark its performance by classifying textures present in the Outex_TC_0012 database for rotation invariant texture classification, KTH-TIPS2 database for material categorization and Columbia-Utrecht (CUReT) database for classification under different views and illuminations. The promising results verify its robustness to image rotation, illumination changes and noise. Furthermore, to validate the generalization to other problems, we extend the application also to face recognition and evaluate the proposed FBL descriptor on the FERET face database. The inspiring results show that this descriptor is highly discriminative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2032–2047 (2009)

    Article  Google Scholar 

  2. Lowe, D.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  3. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73, 213–238 (2007)

    Article  Google Scholar 

  4. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)

    Article  Google Scholar 

  5. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  6. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Liao, S., Chung, C.S.: Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 1221–1224 (2007)

    Google Scholar 

  9. Liao, S., Law, M., Chung, C.S.: Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing 18, 1107–1118 (2009)

    Article  MathSciNet  Google Scholar 

  10. Schaffalitzky, F., Zisserman, A.: Viewpoint invariant texture matching and wide baseline stereo. In: International Conference on Computer Vision, vol. 2, pp. 636–643 (2001)

    Google Scholar 

  11. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2005)

    Article  Google Scholar 

  12. Weszka, J., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics 6, 269–285 (1976)

    Article  MATH  Google Scholar 

  13. Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 291–310 (1999)

    Article  Google Scholar 

  14. Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  15. Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 11, 1549–1560 (1995)

    Article  Google Scholar 

  16. Chellappa, R., Chatterjeey, S.: Classification of textures using gaussian markov random fields. IEEE Transactions on Acoustics, Speech, and Signal Processing 33, 959–963 (1985)

    Article  MathSciNet  Google Scholar 

  17. Cross, G.R.: Markov random field texture models. Ph.D. dissertation, East Lansing, MI (1980)

    Google Scholar 

  18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  19. Fisher, A.: The mathematical theory of probabilities. Macmillan, Basingstoke (1923)

    Google Scholar 

  20. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  21. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorith. In: International Conference on Pattern Recognition, vol. 1, pp. 701–706 (2002)

    Google Scholar 

  22. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: International Conference on Computer Vision, vol. 2, pp. 1597–1604 (2005)

    Google Scholar 

  23. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. ACM Transactions on Graphics 18, 1–34 (1999)

    Article  Google Scholar 

  24. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16, 295–306 (1998)

    Article  Google Scholar 

  25. http://www.robots.ox.ac.uk/vgg/research/texclass/index.html

  26. http://www.itl.nist.gov/iad/humanid/feret/perf/score_cms/score_cms.html

  27. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, Y., Zhao, G., Pietikäinen, M., Xu, Z. (2011). Descriptor Learning Based on Fisher Separation Criterion for Texture Classification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics