Abstract
This paper proposes a novel method to deal with the representation issue in texture classification. A learning framework of image descriptor is designed based on the Fisher separation criteria (FSC) to learn most reliable and robust dominant pattern types considering intra-class similarity and inter-class distance. Image structures are thus be described by a new FSC-based learning (FBL) encoding method. Unlike previous handcraft-design encoding methods, such as the LBP and SIFT, supervised learning approach is used to learn an encoder from training samples. We find that such a learning technique can largely improve the discriminative ability and automatically achieve a good tradeoff between discriminative power and efficiency. The commonly used texture descriptor: local binary pattern (LBP) is taken as an example in the paper, so that we then proposed the FBL-LBP descriptor. We benchmark its performance by classifying textures present in the Outex_TC_0012 database for rotation invariant texture classification, KTH-TIPS2 database for material categorization and Columbia-Utrecht (CUReT) database for classification under different views and illuminations. The promising results verify its robustness to image rotation, illumination changes and noise. Furthermore, to validate the generalization to other problems, we extend the application also to face recognition and evaluate the proposed FBL descriptor on the FERET face database. The inspiring results show that this descriptor is highly discriminative.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2032–2047 (2009)
Lowe, D.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)
Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73, 213–238 (2007)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)
Liao, S., Chung, C.S.: Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 1221–1224 (2007)
Liao, S., Law, M., Chung, C.S.: Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing 18, 1107–1118 (2009)
Schaffalitzky, F., Zisserman, A.: Viewpoint invariant texture matching and wide baseline stereo. In: International Conference on Computer Vision, vol. 2, pp. 636–643 (2001)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2005)
Weszka, J., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics 6, 269–285 (1976)
Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 291–310 (1999)
Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)
Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 11, 1549–1560 (1995)
Chellappa, R., Chatterjeey, S.: Classification of textures using gaussian markov random fields. IEEE Transactions on Acoustics, Speech, and Signal Processing 33, 959–963 (1985)
Cross, G.R.: Markov random field texture models. Ph.D. dissertation, East Lansing, MI (1980)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)
Fisher, A.: The mathematical theory of probabilities. Macmillan, Basingstoke (1923)
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)
Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorith. In: International Conference on Pattern Recognition, vol. 1, pp. 701–706 (2002)
Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: International Conference on Computer Vision, vol. 2, pp. 1597–1604 (2005)
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. ACM Transactions on Graphics 18, 1–34 (1999)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16, 295–306 (1998)
http://www.itl.nist.gov/iad/humanid/feret/perf/score_cms/score_cms.html
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guo, Y., Zhao, G., Pietikäinen, M., Xu, Z. (2011). Descriptor Learning Based on Fisher Separation Criterion for Texture Classification. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-19318-7_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19317-0
Online ISBN: 978-3-642-19318-7
eBook Packages: Computer ScienceComputer Science (R0)