[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multiscale binarised statistical image features for symmetric face matching using multiple descriptor fusion based on class-specific LDA

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Local binary image coding for face image representation is established as a successful methodology mostly popularized by the well-known local binary pattern operator (LBP) and its variants. In this paper, an alternative learning-based binary image coding scheme is introduced which operates by projecting local image patches linearly onto a subspace using learnt filters. Most importantly, independent binarisation of filter responses is justified theoretically using independent component analysis in the filter learning stage. The extension of the method to a multiscale framework makes the feature capable to capture image content at multiple resolutions, improving its expressive power. Taking a local feature-based approach, the coded images are summarised regionally by histograms exploiting dense correspondences between images. A discriminative face image descriptor is constructed next by projecting the regional multiscale histograms onto a class-specific LDA space. The proposed discriminative descriptor can be learnt in an unsupervised fashion and hence perfectly suited for face recognition in unconstrained settings, including the unseen face pair matching task. Finally, the proposed MBSIF descriptor is combined with two state-of-the-art face image representations, namely the multiscale LBP and local phase quantisation features to further enhance the accuracy. The proposed approach has been evaluated extensively on the extended Yale B, LFW, FERET and the XM2VTS databases in various scenarios and shown to perform very favourably compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hussain SU, Napoléon T, Jurie F (2012) Face recognition using local quantized patterns. In: British machive vision xonference, Guildford, United Kingdom, p.11

  2. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns:application to face recognition. PAMI 28(12):2037–2041

    Article  MATH  Google Scholar 

  3. Arashloo S, Kittler J (2013) Efficient processing of mrfs for unconstrained-pose face recognition. In: Biometrics: theory, applications and systems (BTAS), 2013 IEEE sixth international conference, pp 1–8. doi:10.1109/BTAS.2013.6712721

  4. Arashloo S, Kittler J, Christmas W (2010) Facial feature localization using graph matching with higher order statistical shape priors and global optimization. In: Biometrics: theory applications and systems (BTAS), 2010 fourth IEEE international conference, pp 1–8

  5. Arashloo SR, Kittler J (2011) Energy normalization for pose-invariant face recognition based on mrf model image matching. IEEE Trans Pattern Anal Mach Intell 33(6):1274–1280

    Article  Google Scholar 

  6. Arashloo SR, Kittler J (2014) Fast pose invariant face recognition using super coupled multiresolution markov random fields on a GPU. Pattern Recognit Lett 48(0):49–59 (celebrating the life and work of Maria Petrou)

    Article  Google Scholar 

  7. Arashloo SR, Kittler J, Christmas WJ (2011) Pose-invariant face recognition by matching on multi-resolution mrfs linked by supercoupling transform. Comput Vis Image Underst 115(7):1073–1083

    Article  Google Scholar 

  8. Ashraf A, Lucey S, Chen T (2008) Learning patch correspondences for improved viewpoint invariant face recognition. CVPR 2008:1–8

    Google Scholar 

  9. Asthana A, Marks TK, Jones MJ, Tieu KH, Rohith M (2011) Fully automatic pose-invariant face recognition via 3d pose normalization. In: Computer vision, IEEE international conference, vol 0, pp 937–944. doi:10.1109/ICCV.2011.6126336

  10. Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255

    Article  Google Scholar 

  11. Barkan O, Weill J, Wolf L, Aronowitz H (2013) Fast high dimensional vector multiplication face recognition. In: ICCV, pp 1960–1967

  12. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19(7):711–720. doi:10.1109/34.598228

    Article  Google Scholar 

  13. Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N (2011) Localizing parts of faces using a consensus of exemplars. In: CVPR. IEEE, pp 545–552

  14. Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074

    Article  Google Scholar 

  15. Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25:2003

    Article  Google Scholar 

  16. Cao X, Wei Y, Wen F, Sun J (2012) Face alignment by explicit shape regression. In: CVPR. IEEE, pp 2887–2894

  17. Cao Z, Yin Q, Tang X, Sun J (2010) Face recognition with learning-based descriptor. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference, pp 2707–2714. doi:10.1109/CVPR.2010.5539992

  18. Chan CH, Kittler J, Messer K (2007) Multi-scale local binary pattern histograms for face recognition. In: Proceedings of international conference on biometrics. Springer, pp 809–818

  19. Chan CH, Tahir MA, Kittler J, Pietikainen M (2013) Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans Pattern Anal Mach Intell 35(5):1164–1177. doi:10.1109/TPAMI.2012.199

  20. Cootes T, Edwards G, Taylor C (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Article  Google Scholar 

  21. Dong Y, Zhen L, Stan L (2013) Towards pose robust face recognition. In: IEEE Computer vision and pattern recognition

  22. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886–893

  23. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning, ICML ’07ACM, New York, pp 209–216

  24. Kannala J, Esa R (2012) Bsif: binarized statistical image features. In: Proceedings of 21st international conference on pattern recognition (ICPR 2012), Tsukuba, Japan, pp 1363–1366

  25. Friedman JH (2000) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao H, Ekenel HK, Stiefelhagen R (2009) Pose normalization for local appearance-based face recognition. In: Proceedings of the third international conference on advances in biometrics, ICB ’09. Springer, Berlin, Heidelberg, pp 32–41

  27. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  28. Guillaumin M, Verbeek JJ, Schmid C (2009) Is that you? metric learning approaches for face identification. In: ICCV. IEEE, pp 498–505

  29. Li H, Hua G, Lin Z, Brandt L, Yang J (2013) Probabilistic elastic matching for pose variant face verification. In: IEEE computer vision and pattern recognition

  30. Ho HT, Chellappa R (2013) Pose-invariant face recognition using markov random fields. Image Process IEEE Trans 22(4):1573–1584

    Article  MathSciNet  Google Scholar 

  31. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst

  32. Hyvrinen A, Hurri J, Hoyer P (2009) Natural image statistics a probabilistic approach to early computational vision. Springer, New York

    MATH  Google Scholar 

  33. Simonyan K, Parkhi OM, Vedaldi A, Andrew Z (2013) Fisher vector faces in the wild. In: British machine vision conference (BMVC)

  34. Kittler J, Li YP, Matas J (2000) Face verification using client specific fisher faces. In: The statistics of directions, shapes and images

  35. Kumar N, Berg A, Belhumeur PN, Nayar S (2011) Describable visual attributes for face verification and image search. IEEE Trans Pattern Anal Mach Intell 33(10):1962–1977

    Article  Google Scholar 

  36. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009 Attribute and simile classifiers for face verification. In. In IEEE international conference on computer vision (ICCV)

  37. Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  38. Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302. doi:10.1109/TPAMI.2013.112

  39. Li,SZ, Jain AK (eds) (2011) Handbook of face recognition, 2nd edn. Springer, Berlin. doi:10.1007/978-0-85729-932-1

  40. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11:467–476

    Article  Google Scholar 

  41. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  42. Messer K, Matas J, Kittler J, Jonsson K (1999) Xm2vtsdb: the extended m2vts database. In: Second international conference on audio and video-based biometric person authentication, pp 72–77

  43. Mignon A, Jurie F (2012) PCCA: a new approach for distance learning from sparse pairwise constraints. In: IEEE conference on computer vision and pattern recognition, France, pp 2666–2672

  44. Nguyen H, Bai L, Shen L (2009) Local gabor binary pattern whitened PCA: a novel approach for face recognition from single image per person. In: Tistarelli M, Nixon M (eds) Advances in biometrics, Lecture notes in computer science, vol 5558. Springer, Berlin, Heidelberg, pp 269–278

  45. Nowak E, Jurie F (2007) Learning visual similarity measures for comparing never seen objects. In: Computer vision and pattern recognition, 2007. CVPR ’07. IEEE conference, pp 1–8. doi:10.1109/cvpr.2007.382969

  46. Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607–609

    Article  Google Scholar 

  47. Phillips PJ, Flynn PJ, Scruggs WT, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek WJ (2005) Overview of the face recognition grand challenge. In: CVPR (1). IEEE Computer Society, pp 947–954

  48. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  49. Pinto N, DiCarlo JJ, Cox DD (2009) How far can you get with a modern face recognition test set using only simple features? In: IEEE computer vision and pattern recognition

  50. Rahtu E, Heikkilä J, Ojansivu V, Ahonen T (2012) Local phase quantization for blur-insensitive image analysis. Image Vis Comput 30(8):501–512

    Article  Google Scholar 

  51. Rivera S, Martnez AM (2012) Learning deformable shape manifolds. Pattern Recognit 45(4):1792–1801

    Article  Google Scholar 

  52. Sanderson C, Lovell BC (2009) Multi-region probabilistic histograms for robust and scalable identity inference. In: Tistarelli M, Nixon MS (eds) ICB, Lecture notes in computer acience, vol 5558. Springer, pp 199–208

  53. Saragih J, Gcke R (2007) A nonlinear discriminative approach to aam fitting. In: ICCV. IEEE, pp. 1–8

  54. Saragih JM, Lucey S, Cohn JF (2009) Face alignment through subspace constrained mean-shifts. In: ICCV. IEEE, pp 1034–1041

  55. Sarfraz MS, Hellwich O (2010) Probabilistic learning for fully automatic face recognition across pose. Image Vis Comput 28(5):744–753

    Article  Google Scholar 

  56. Seo HJ, Milanfar P (2011) Face verification using the lark representation. IEEE Trans Inf Forensics Secur 6(4):1275–1286

    Article  Google Scholar 

  57. Sharma A, Haj MA, Choi J, Davis LS, Jacobs DW (2012) Robust pose invariant face recognition using coupled latent space discriminant analysis. Comput Vis Image Underst 116(11):1095–1110

    Article  Google Scholar 

  58. Sharma G, ul Hussain S, Jurie F (2012) Local higher-order statistics (lhs) for texture categorization and facial analysis. In: Proceedings of the 12th European conference on computer vision—volume part VII, ECCV’12. Springer, Berlin, Heidelberg, pp 1–12

  59. Snchez-Lozano E, la Torre FD, Gonzlez-Jimnez D (2012) Continuous regression for non-rigid image alignment. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid C (eds) ECCV (7), Lecture notes in computer science, vol 7578. Springer, pp 250–263

  60. del Solar JR, Verschae R, Correa M (2009) Recognition of faces in unconstrained environments: a comparative study. EURASIP J Adv Signal Process 2009:1–19

    Article  MATH  Google Scholar 

  61. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach 24(7):971–987

    Article  MATH  Google Scholar 

  62. Tahir MA, Chan CH, Kittler J, Bouridane A (2011) Face recognition using multi-scale local phase quantisation and linear regression classifier. In: Macq B, Schelkens P (eds) ICIP. IEEE, pp 765–768

  63. Taigman Y, Wolf L, Hassner T (2009) Multiple one-shots for utilizing class label information. In: BMVC, British Machine Vision Association

  64. Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: AMFG, pp 168–182

  65. Tena J, Smith R, Hamouz M, Kittler J, Hilton A, Illingworth J (2007) 2d face pose normalisation using a 3d morphable model. In: International conference on video and signal based surveillance, pp 1–6

  66. Tresadern PA, Sauer P, Cootes TF (2010) Additive update predictors in active appearance models. In: Labrosse F, Zwiggelaar R, Liu Y, Tiddeman B (eds) BMVC. British Machine Vision Association, pp 1–12

  67. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings. 1991 IEEE Computer Society conference on computer vision and pattern recognition. IEEE Computer Society Press, pp 586–591

  68. Tzimiropoulos G, Zafeiriou S, Pantic M (2011) Robust and efficient parametric face alignment. In: Metaxas DN, Quan L, Sanfeliu A, Gool LJV (eds) ICCV. IEEE, pp 1847–1854

  69. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154. doi:10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  70. Wang R, Lei Z, Ao M, Li S (2009) Bayesian face recognition based on markov random field modeling. In: ICB, pp 42–51

  71. Wiskott L, Fellous J, Kuiger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. PAMI 19(7):775–779

    Article  Google Scholar 

  72. Wolf L, Hassner T, Taigman Y (2008) Descriptor based methods in the wild. In: Faces in real-life images workshop in ECCV [(b) similarity scores based on background samples]

  73. Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In: Asian conference on computer vision (ACCV)

  74. Yi D, Lei Z, Li S (2013) Towards pose robust face recognition. In: Computer vision and pattern recognition (CVPR), 2013 IEEE conference, pp 3539–3545

  75. Ying Y, Li P (2012) Distance metric learning with eigenvalue optimization. J Mach Learn Res 13(1). http://jmlr.csail.mit.edu/papers/v13/ying12a.html

  76. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68

    Article  MathSciNet  Google Scholar 

  77. Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. In: CVPR. IEEE, pp 2879–2886

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shervin Rahimzadeh Arashloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arashloo, S.R. Multiscale binarised statistical image features for symmetric face matching using multiple descriptor fusion based on class-specific LDA. Pattern Anal Applic 20, 113–126 (2017). https://doi.org/10.1007/s10044-015-0475-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0475-1

Keywords