Abstract
Local binary image coding for face image representation is established as a successful methodology mostly popularized by the well-known local binary pattern operator (LBP) and its variants. In this paper, an alternative learning-based binary image coding scheme is introduced which operates by projecting local image patches linearly onto a subspace using learnt filters. Most importantly, independent binarisation of filter responses is justified theoretically using independent component analysis in the filter learning stage. The extension of the method to a multiscale framework makes the feature capable to capture image content at multiple resolutions, improving its expressive power. Taking a local feature-based approach, the coded images are summarised regionally by histograms exploiting dense correspondences between images. A discriminative face image descriptor is constructed next by projecting the regional multiscale histograms onto a class-specific LDA space. The proposed discriminative descriptor can be learnt in an unsupervised fashion and hence perfectly suited for face recognition in unconstrained settings, including the unseen face pair matching task. Finally, the proposed MBSIF descriptor is combined with two state-of-the-art face image representations, namely the multiscale LBP and local phase quantisation features to further enhance the accuracy. The proposed approach has been evaluated extensively on the extended Yale B, LFW, FERET and the XM2VTS databases in various scenarios and shown to perform very favourably compared to the state-of-the-art methods.
Similar content being viewed by others
References
Hussain SU, Napoléon T, Jurie F (2012) Face recognition using local quantized patterns. In: British machive vision xonference, Guildford, United Kingdom, p.11
Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns:application to face recognition. PAMI 28(12):2037–2041
Arashloo S, Kittler J (2013) Efficient processing of mrfs for unconstrained-pose face recognition. In: Biometrics: theory, applications and systems (BTAS), 2013 IEEE sixth international conference, pp 1–8. doi:10.1109/BTAS.2013.6712721
Arashloo S, Kittler J, Christmas W (2010) Facial feature localization using graph matching with higher order statistical shape priors and global optimization. In: Biometrics: theory applications and systems (BTAS), 2010 fourth IEEE international conference, pp 1–8
Arashloo SR, Kittler J (2011) Energy normalization for pose-invariant face recognition based on mrf model image matching. IEEE Trans Pattern Anal Mach Intell 33(6):1274–1280
Arashloo SR, Kittler J (2014) Fast pose invariant face recognition using super coupled multiresolution markov random fields on a GPU. Pattern Recognit Lett 48(0):49–59 (celebrating the life and work of Maria Petrou)
Arashloo SR, Kittler J, Christmas WJ (2011) Pose-invariant face recognition by matching on multi-resolution mrfs linked by supercoupling transform. Comput Vis Image Underst 115(7):1073–1083
Ashraf A, Lucey S, Chen T (2008) Learning patch correspondences for improved viewpoint invariant face recognition. CVPR 2008:1–8
Asthana A, Marks TK, Jones MJ, Tieu KH, Rohith M (2011) Fully automatic pose-invariant face recognition via 3d pose normalization. In: Computer vision, IEEE international conference, vol 0, pp 937–944. doi:10.1109/ICCV.2011.6126336
Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255
Barkan O, Weill J, Wolf L, Aronowitz H (2013) Fast high dimensional vector multiplication face recognition. In: ICCV, pp 1960–1967
Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Pattern Anal Mach Intell IEEE Trans 19(7):711–720. doi:10.1109/34.598228
Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N (2011) Localizing parts of faces using a consensus of exemplars. In: CVPR. IEEE, pp 545–552
Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25(9):1063–1074
Blanz V, Vetter T (2003) Face recognition based on fitting a 3d morphable model. IEEE Trans Pattern Anal Mach Intell 25:2003
Cao X, Wei Y, Wen F, Sun J (2012) Face alignment by explicit shape regression. In: CVPR. IEEE, pp 2887–2894
Cao Z, Yin Q, Tang X, Sun J (2010) Face recognition with learning-based descriptor. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference, pp 2707–2714. doi:10.1109/CVPR.2010.5539992
Chan CH, Kittler J, Messer K (2007) Multi-scale local binary pattern histograms for face recognition. In: Proceedings of international conference on biometrics. Springer, pp 809–818
Chan CH, Tahir MA, Kittler J, Pietikainen M (2013) Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans Pattern Anal Mach Intell 35(5):1164–1177. doi:10.1109/TPAMI.2012.199
Cootes T, Edwards G, Taylor C (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685
Dong Y, Zhen L, Stan L (2013) Towards pose robust face recognition. In: IEEE Computer vision and pattern recognition
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR, pp 886–893
Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: Proceedings of the 24th international conference on machine learning, ICML ’07ACM, New York, pp 209–216
Kannala J, Esa R (2012) Bsif: binarized statistical image features. In: Proceedings of 21st international conference on pattern recognition (ICPR 2012), Tsukuba, Japan, pp 1363–1366
Friedman JH (2000) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232
Gao H, Ekenel HK, Stiefelhagen R (2009) Pose normalization for local appearance-based face recognition. In: Proceedings of the third international conference on advances in biometrics, ICB ’09. Springer, Berlin, Heidelberg, pp 32–41
Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660
Guillaumin M, Verbeek JJ, Schmid C (2009) Is that you? metric learning approaches for face identification. In: ICCV. IEEE, pp 498–505
Li H, Hua G, Lin Z, Brandt L, Yang J (2013) Probabilistic elastic matching for pose variant face verification. In: IEEE computer vision and pattern recognition
Ho HT, Chellappa R (2013) Pose-invariant face recognition using markov random fields. Image Process IEEE Trans 22(4):1573–1584
Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07–49, University of Massachusetts, Amherst
Hyvrinen A, Hurri J, Hoyer P (2009) Natural image statistics a probabilistic approach to early computational vision. Springer, New York
Simonyan K, Parkhi OM, Vedaldi A, Andrew Z (2013) Fisher vector faces in the wild. In: British machine vision conference (BMVC)
Kittler J, Li YP, Matas J (2000) Face verification using client specific fisher faces. In: The statistics of directions, shapes and images
Kumar N, Berg A, Belhumeur PN, Nayar S (2011) Describable visual attributes for face verification and image search. IEEE Trans Pattern Anal Mach Intell 33(10):1962–1977
Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009 Attribute and simile classifiers for face verification. In. In IEEE international conference on computer vision (ICCV)
Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698
Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302. doi:10.1109/TPAMI.2013.112
Li,SZ, Jain AK (eds) (2011) Handbook of face recognition, 2nd edn. Springer, Berlin. doi:10.1007/978-0-85729-932-1
Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11:467–476
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110
Messer K, Matas J, Kittler J, Jonsson K (1999) Xm2vtsdb: the extended m2vts database. In: Second international conference on audio and video-based biometric person authentication, pp 72–77
Mignon A, Jurie F (2012) PCCA: a new approach for distance learning from sparse pairwise constraints. In: IEEE conference on computer vision and pattern recognition, France, pp 2666–2672
Nguyen H, Bai L, Shen L (2009) Local gabor binary pattern whitened PCA: a novel approach for face recognition from single image per person. In: Tistarelli M, Nixon M (eds) Advances in biometrics, Lecture notes in computer science, vol 5558. Springer, Berlin, Heidelberg, pp 269–278
Nowak E, Jurie F (2007) Learning visual similarity measures for comparing never seen objects. In: Computer vision and pattern recognition, 2007. CVPR ’07. IEEE conference, pp 1–8. doi:10.1109/cvpr.2007.382969
Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607–609
Phillips PJ, Flynn PJ, Scruggs WT, Bowyer KW, Chang J, Hoffman K, Marques J, Min J, Worek WJ (2005) Overview of the face recognition grand challenge. In: CVPR (1). IEEE Computer Society, pp 947–954
Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104
Pinto N, DiCarlo JJ, Cox DD (2009) How far can you get with a modern face recognition test set using only simple features? In: IEEE computer vision and pattern recognition
Rahtu E, Heikkilä J, Ojansivu V, Ahonen T (2012) Local phase quantization for blur-insensitive image analysis. Image Vis Comput 30(8):501–512
Rivera S, Martnez AM (2012) Learning deformable shape manifolds. Pattern Recognit 45(4):1792–1801
Sanderson C, Lovell BC (2009) Multi-region probabilistic histograms for robust and scalable identity inference. In: Tistarelli M, Nixon MS (eds) ICB, Lecture notes in computer acience, vol 5558. Springer, pp 199–208
Saragih J, Gcke R (2007) A nonlinear discriminative approach to aam fitting. In: ICCV. IEEE, pp. 1–8
Saragih JM, Lucey S, Cohn JF (2009) Face alignment through subspace constrained mean-shifts. In: ICCV. IEEE, pp 1034–1041
Sarfraz MS, Hellwich O (2010) Probabilistic learning for fully automatic face recognition across pose. Image Vis Comput 28(5):744–753
Seo HJ, Milanfar P (2011) Face verification using the lark representation. IEEE Trans Inf Forensics Secur 6(4):1275–1286
Sharma A, Haj MA, Choi J, Davis LS, Jacobs DW (2012) Robust pose invariant face recognition using coupled latent space discriminant analysis. Comput Vis Image Underst 116(11):1095–1110
Sharma G, ul Hussain S, Jurie F (2012) Local higher-order statistics (lhs) for texture categorization and facial analysis. In: Proceedings of the 12th European conference on computer vision—volume part VII, ECCV’12. Springer, Berlin, Heidelberg, pp 1–12
Snchez-Lozano E, la Torre FD, Gonzlez-Jimnez D (2012) Continuous regression for non-rigid image alignment. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid C (eds) ECCV (7), Lecture notes in computer science, vol 7578. Springer, pp 250–263
del Solar JR, Verschae R, Correa M (2009) Recognition of faces in unconstrained environments: a comparative study. EURASIP J Adv Signal Process 2009:1–19
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach 24(7):971–987
Tahir MA, Chan CH, Kittler J, Bouridane A (2011) Face recognition using multi-scale local phase quantisation and linear regression classifier. In: Macq B, Schelkens P (eds) ICIP. IEEE, pp 765–768
Taigman Y, Wolf L, Hassner T (2009) Multiple one-shots for utilizing class label information. In: BMVC, British Machine Vision Association
Tan X, Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: AMFG, pp 168–182
Tena J, Smith R, Hamouz M, Kittler J, Hilton A, Illingworth J (2007) 2d face pose normalisation using a 3d morphable model. In: International conference on video and signal based surveillance, pp 1–6
Tresadern PA, Sauer P, Cootes TF (2010) Additive update predictors in active appearance models. In: Labrosse F, Zwiggelaar R, Liu Y, Tiddeman B (eds) BMVC. British Machine Vision Association, pp 1–12
Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings. 1991 IEEE Computer Society conference on computer vision and pattern recognition. IEEE Computer Society Press, pp 586–591
Tzimiropoulos G, Zafeiriou S, Pantic M (2011) Robust and efficient parametric face alignment. In: Metaxas DN, Quan L, Sanfeliu A, Gool LJV (eds) ICCV. IEEE, pp 1847–1854
Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154. doi:10.1023/B:VISI.0000013087.49260.fb
Wang R, Lei Z, Ao M, Li S (2009) Bayesian face recognition based on markov random field modeling. In: ICB, pp 42–51
Wiskott L, Fellous J, Kuiger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. PAMI 19(7):775–779
Wolf L, Hassner T, Taigman Y (2008) Descriptor based methods in the wild. In: Faces in real-life images workshop in ECCV [(b) similarity scores based on background samples]
Wolf L, Hassner T, Taigman Y (2009) Similarity scores based on background samples. In: Asian conference on computer vision (ACCV)
Yi D, Lei Z, Li S (2013) Towards pose robust face recognition. In: Computer vision and pattern recognition (CVPR), 2013 IEEE conference, pp 3539–3545
Ying Y, Li P (2012) Distance metric learning with eigenvalue optimization. J Mach Learn Res 13(1). http://jmlr.csail.mit.edu/papers/v13/ying12a.html
Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68
Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. In: CVPR. IEEE, pp 2879–2886
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arashloo, S.R. Multiscale binarised statistical image features for symmetric face matching using multiple descriptor fusion based on class-specific LDA. Pattern Anal Applic 20, 113–126 (2017). https://doi.org/10.1007/s10044-015-0475-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10044-015-0475-1