Abstract
Patch-based approaches in imaging require heavy computations on many small sub-blocks of images but are easily parallelizable since usually different sub-blocks can be treated independently. In order to make these approaches useful in practical applications efficient algorithms and implementations are required. Newer architectures like the Cell Broadband Engine Architecture (CBEA) make it even possible to come close to real-time performance for moderate image sizes. In this article we present performance results for image denoising on the CBEA. The image denoising is done by finding sparse representations of signals from a given overcomplete dictionary and assuming that noise cannot be represented sparsely. We compare our results with a standard multicore implementation and show the gain of the CBEA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Starck, J., Elad, M., Donoho, D.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Transactions on Image Processing 14(10), 1570–1582 (2005)
Tropp, J.: Topics in Sparse Approximation. PhD thesis, The University of Texas at Austin (2004)
Aharon, M., Elad, M., Bruckstein, A.: On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra and Its Applications 416(1), 48–67 (2006)
Borsdorf, A., Raupach, R., Hornegger, J.: Wavelet based Noise Reduction by Identification of Correlation. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 21–30. Springer, Heidelberg (2006)
Borsdorf, A., Raupach, R., Hornegger, J.: Separate CT-Reconstruction for 3D Wavelet Based Noise Reduction Using Correlation Analysis. In: Yu, B. (ed.) IEEE NSS/MIC Conference Record., pp. 2633–2638 (2007)
Mayer, M., Borsdorf, A., Köstler, H., Hornegger, J., Rüde, U.: Nonlinear Diffusion vs. Wavelet Based Noise Reduction in CT Using Correlation Analysis. In: Lensch, H., Rosenhahn, B., Seidel, H.P., Slusallek, P., Weickert, J. (eds.) Vision, Modeling, and Visualization 2007, pp. 223–232 (2007)
Bartuschat, D., Borsdorf, A., Köstler, H., Rubinstein, R., Stürmer, M.: A parallel K-SVD implementation for CT image denoising. Technical report, Department of Computer Science 10 (System Simulation), Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (2009)
Köstler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. Verlag Dr. Hut, München (2008)
Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constructive Approximation 13(1), 57–98 (1997)
Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient Implementation of the K-SVD Algorithm and the Batch-OMP Method
Donoho, D.L., Elad, M.: Optimally sparse representations in general (non-orthogonal) dictionaries via l 1 minimization. Proc. Nat. Acad. Sci. 100, 2197–2202 (2002)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, 2nd edn., vol. 147. Springer, Heidelberg (2006)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process 15(12), 3736–3745 (2006)
IBM Corporation Rochester MN, USA: Programming Tutorial, Software Development Kit for Multicore Acceleration, Version 3.0 (2007)
Gschwind, M.: The Cell Broadband Engine: Exploiting Multiple Levels of Parallelism in a Chip Multiprocessor. International Journal of Parallel Programming 35(3), 233–262 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bartuschat, D., Stürmer, M., Köstler, H. (2010). An Orthogonal Matching Pursuit Algorithm for Image Denoising on the Cell Broadband Engine. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-14390-8_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14389-2
Online ISBN: 978-3-642-14390-8
eBook Packages: Computer ScienceComputer Science (R0)