Abstract
In this paper we present a novel wavelet based method for edge preserving noise reduction. In contrast to most common methods, the algorithm introduced here does not work on single input data. It takes two or more spatially identical images, which are both impaired by noise. Assuming the statistical independence of noise in the different images, correlation computations can be used in order to preserve structures while reducing noise. Different methods for correlation analysis have been investigated, on the one hand based directly on the original input images and on the other hand taking into account the wavelet representation of the input data. The presented approach proves to be suited for the application in computed tomography, where high noise reduction rates of approximately 50% can be achieved without loss of structure information.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Catte, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge-detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 29, 182–193 (1992)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: IEEE International Conference on Computer Vision, Bombay, India, pp. 839–846 (1998), http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf
Hubbard, B.: Wavelets: Die Mathematik der kleinen Wellen. Birkhäuser Verlag, Basel (1997)
Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)
Xu, Y., Weaver, J., Healy, D., Lu, J.: Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Transactions on Image Processing 3, 747–758 (1994)
Faghih, F., Smith, M.: Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. IEEE Transactions on Image Processing 11, 1062–1071 (2002)
Pizurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Image Processing 22, 1062–1071 (2003)
Hoeschen, C., Buhr, E., Tischenko, O.: Verfahren zur Reduktion von Rauschstrukturen in Arrays von Pixelwerten (2004) (Offenlegungsschrift DE10305221A1 2004.08.26)
Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Maschine Intelligence 11, 674–693 (1989)
Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley- Cambridge Press (1996)
Weisstein, E.: Correlation coefficient (2005), http://mathworld.wolfram.com/CorrelationCoefficient.html
Borsdorf, A.: Noise reduction in CT images by identification of correlations (2005)
Borsdorf, A., Raupach, R., Hornegger, J.: Reduction of quantum noise in CT-images by identification of correlations. In: Proceedings of the 2nd Russian-Bavarian Conference on Bio-Medical Engineering, Moskow (2006)
Getreuer, P.: Filter coefficients to popular wavelets (2005), http://www.mathworks.com
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borsdorf, A., Raupach, R., Hornegger, J. (2006). Wavelet Based Noise Reduction by Identification of Correlations. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_3
Download citation
DOI: https://doi.org/10.1007/11861898_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44412-1
Online ISBN: 978-3-540-44414-5
eBook Packages: Computer ScienceComputer Science (R0)