Abstract
In this paper we propose a skeletonization approach that encodes a 3D object into a skeletal Reeb graph using a normalized mixture distance function. Then, we introduce a novel graph matching algorithm by comparing the relative shortest paths between the skeleton endpoints. Experimental results demonstrate the feasibility of the proposed topological Reeb graph as a shape signature for 3D object retrieval using a benchmark of articulated shapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fomenko, A.T., Kunii, T.L.: Topological modeling for visualization. Springer, Tokyo (1997)
Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. Jour. Computer Vision 35(1), 13–32 (1999)
Hilaga, H., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH, pp. 203–212 (2001)
Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Computer Graphics and Applications 11(5), 66–78 (1991)
Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Machine Vision and Applications 19(4), 261–275 (2008)
Ankerst, M., Kastenmüller, G., Kriegel, H., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 207–226. Springer, Heidelberg (1999)
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graphics 21(4), 807–832 (2002)
Ben Hamza, A., Krim, H.: Geodesic matching of triangulated surfaces. IEEE Trans. Image Processing 15(8), 2249–2258 (2006)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. ACM Sympo. Geometry Processing, pp. 156–164 (2003)
Milnor, J.: Morse theory. Princeton University Press, New Jersey (1963)
Nielson, G.M., Foley, T.A.: A survey of applications of an affine invariant norm. Mathematical Methods in Computer Aided Geometric Design, pp. 445–467. Academic Press, Boston (1989)
Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence 30(7), 1282–1292 (2008)
Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohamed, W., Ben Hamza, A. (2010). Retrieving Articulated 3D Objects Using Normalized Distance Function. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-14061-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14060-0
Online ISBN: 978-3-642-14061-7
eBook Packages: Computer ScienceComputer Science (R0)