[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Retrieving Articulated 3D Objects Using Normalized Distance Function

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6169))

Included in the following conference series:

  • 754 Accesses

Abstract

In this paper we propose a skeletonization approach that encodes a 3D object into a skeletal Reeb graph using a normalized mixture distance function. Then, we introduce a novel graph matching algorithm by comparing the relative shortest paths between the skeleton endpoints. Experimental results demonstrate the feasibility of the proposed topological Reeb graph as a shape signature for 3D object retrieval using a benchmark of articulated shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fomenko, A.T., Kunii, T.L.: Topological modeling for visualization. Springer, Tokyo (1997)

    Book  MATH  Google Scholar 

  2. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. Jour. Computer Vision 35(1), 13–32 (1999)

    Article  Google Scholar 

  3. Hilaga, H., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH, pp. 203–212 (2001)

    Google Scholar 

  4. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Computer Graphics and Applications 11(5), 66–78 (1991)

    Article  Google Scholar 

  5. Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Machine Vision and Applications 19(4), 261–275 (2008)

    Article  MATH  Google Scholar 

  6. Ankerst, M., Kastenmüller, G., Kriegel, H., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 207–226. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graphics 21(4), 807–832 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Hamza, A., Krim, H.: Geodesic matching of triangulated surfaces. IEEE Trans. Image Processing 15(8), 2249–2258 (2006)

    Article  Google Scholar 

  9. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. ACM Sympo. Geometry Processing, pp. 156–164 (2003)

    Google Scholar 

  10. Milnor, J.: Morse theory. Princeton University Press, New Jersey (1963)

    Book  MATH  Google Scholar 

  11. Nielson, G.M., Foley, T.A.: A survey of applications of an affine invariant norm. Mathematical Methods in Computer Aided Geometric Design, pp. 445–467. Academic Press, Boston (1989)

    MATH  Google Scholar 

  12. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  13. Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007)

    Article  Google Scholar 

  14. http://www.cim.McGill.ca/shape/benchmark

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohamed, W., Ben Hamza, A. (2010). Retrieving Articulated 3D Objects Using Normalized Distance Function. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2010. Lecture Notes in Computer Science, vol 6169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14061-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14061-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14060-0

  • Online ISBN: 978-3-642-14061-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics