[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

2D and 3D shape retrieval using skeleton filling rate

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Akgul CB, Sankur B, Yemez Y, Schmitt F (2009) 3d model retrieval using probability density-based shape descriptors. IEEE Trans Pattern Anal Mach Intell 31 (6):1117–1133

    Article  MATH  Google Scholar 

  2. Akimaliev M, Demirci MF (2015) Improving skeletal shape abstraction using multiple optimal solutions. Pattern Recogn 48(11):3504–3515

    Article  Google Scholar 

  3. Andaló FA, Miranda PAV, Torres RDS, Falcão AX (2010) Shape feature extraction and description based on tensor scale. Pattern Recogn 43(1):26–36

    Article  MATH  Google Scholar 

  4. Ankerst M, Kastenmüller G, Kriegel H-P, Seidl T (1999) 3d shape histograms for similarity search and classification in spatial databases. In: Advances in spatial databases. Springer, pp 207–226

  5. Arbter K, Snyder WE, Burhardt H, Hirzinger G (1990) Application of affine-invariant fourier descriptors to recognition of 3-d objects. IEEE Trans Pattern Anal Mach Intell 12(7):640–647

    Article  Google Scholar 

  6. Axenopoulos A, Litos G, Daras P (2011) 3d model retrieval using accurate pose estimation and view-based similarity. In: Proceedings of the 1st ACM international conference on multimedia retrieval. ACM, p 41

  7. Belongie Serge, Malik Jitendra, Puzicha Jan (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24 (4):509–522

    Article  Google Scholar 

  8. Ben-Chen M, Gotsman C (2008) Characterizing shape using conformal factors. In: 3DOR, pp 1–8

  9. Bronstein AM, Bronstein MM, Bruckstein AM, Kimmel R (2008) Analysis of two-dimensional non-rigid shapes. Int J Comput Vis 78(1):67–88

    Article  Google Scholar 

  10. Bustos B, Schreck T, Walter M, Barrios JM, Schaefer M, Keim D (2012) Improving 3d similarity search by enhancing and combining 3d descriptors. Multimed Tools Appl 58(1):81–108

    Article  Google Scholar 

  11. Chang X, Yang Y, Hauptmann AG, Xing EP, Yu Y-L (2015) Semantic concept discovery for large-scale zero-shot event detection. In: Proceedings of IJCAI

  12. Chang X, Yang Y, Xing E, Yu Y (2015) Complex event detection using semantic saliency and nearly-isotonic svm. In: Proceedings of the 32nd international conference on machine learning (ICML-15), pp 1348–1357

  13. Chang X, Yu Y-L, Yang Y, Hauptmann AG (2015) Searching persuasively: Joint event detection and evidence recounting with limited supervision. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference. ACM, pp 581–590

  14. Chellappa R, Bagdazian R (1984) Fourier coding of image boundaries. IEEE Trans Pattern Anal Mach Intell 6(1):102–105

    Article  Google Scholar 

  15. Chen D-Y, Tian X-P, Shen Y-T, Ouhyoung M (2003) On visual similarity based 3d model retrieval. In: Computer graphics forum, vol 22. Wiley online library, pp 223–232

  16. Cohen S, Guibas L (1999) The earth mover’s distance under transformation sets. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2. IEEE, pp 1076–1083

  17. Cornea ND, Demirci MF, Silver D, Shokoufandeh A, Dickinson SJ, Kantor PB (2005) 3d object retrieval using many-to-many matching of curve skeletons. In: Shape Modeling and Applications, 2005 International Conference. IEEE, pp 366–371

  18. Daliri MR, Torre V (2008) Robust symbolic representation for shape recognition and retrieval. Pattern Recogn 41(5):1782–1798

    Article  MATH  Google Scholar 

  19. Demirci MF, Shokoufandeh A, Keselman Y, Dickinson S, Bretzner L (2003) Many-to-many matching of scale-space feature hierarchies using metric embedding. In: Griffin LD, Lillholm M (eds) Scale Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 17–32

  20. Demirci MF, Platel B, Shokoufandeh A, Florack L, Dickinson S (2009) The representation and matching of images using top points. J Math Imaging Vis 35 (2):103–116

    Article  MathSciNet  Google Scholar 

  21. Demirci MF, Osmanlioglu Y, Shokoufandeh A, Dickinson S (2011) Efficient many-to-many feature matching under the 1 norm. Comput Vis Image Underst 115(7):976–983

    Article  Google Scholar 

  22. Donoser M, Bischof H (2013) Diffusion processes for retrieval revisited. In: 2013 IEEE conference on Computer vision and pattern recognition (CVPR). IEEE, pp 1320–1327

  23. Eberly D (1994) A differential geometric approach to anisotropic diffusion. In: Bart M, Romeny TH (eds) Geometry-Driven Diffusion in Computer Vision, volume 1 of Computational Imaging and Vision. Springer, Netherlands, pp 371–392

  24. Ebrahim Y, Ahmed M, Abdelsalam W, Chau S-C (2009) Shape representation and description using the hilbert curve. Pattern Recogn Lett 30(4):348–358

    Article  Google Scholar 

  25. Eitz M, Richter R, Boubekeur T, Hildebrand K, Alexa M (2012) Sketch-based shape retrieval. ACM Trans Graph 31(4):31

    Google Scholar 

  26. Frejlichowski D (2011) A three-dimensional shape description algorithm based on polar-fourier transform for 3d model retrieval. In: Heyden A, Kahl F (eds) Image Analysis, volume 6688 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 457–466

  27. Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search engine for 3d models. ACM Trans Graph (TOG) 22 (1):83–105

    Article  Google Scholar 

  28. Furuya T, Ohbuchi R (2009) Dense sampling and fast encoding for 3d model retrieval using bag-of-visual features. In: Proceedings of the ACM international conference on image and video retrieval. ACM, p 26

  29. Gal R, Shamir A, Cohen-Or D (2007) Pose-oblivious shape signature. IEEE Trans Vis Comput Graph 13(2):261–271

    Article  Google Scholar 

  30. Gopalan R, Turaga P, Chellappa R (2010) Articulation-invariant representation of non-planar shapes. In: Computer vision–ECCV 2010. Springer, pp 286–299

  31. Granlund GH (1972) Fourier preprocessing for hand print character recognition. IEEE Trans Comput 21(2):195–201

    Article  MathSciNet  MATH  Google Scholar 

  32. Guocheng A, Fengjun Z, Hong’an W, Guozhong D (2010) Shape filling rate for silhouette representation and recognition. In: 2010 20th international conference on Pattern recognition (ICPR). IAPR, pp 507–510

  33. Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. ACM, pp 203–212

  34. Horn BKP (1984) Extended gaussian images. IEEE Proc 72(12):1671–1686

    Article  Google Scholar 

  35. Hu R-X, Jia W, Zhao Ya, Gui J (2012) Perceptually motivated morphological strategies for shape retrieval. Pattern Recogn 45(9):3222–3230

    Article  Google Scholar 

  36. Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K (2005) Three-dimensional shape searching: state-of-the-art review and future trends. Comput Aided Des 37(5):509–530

    Article  Google Scholar 

  37. Iyer N, Kalyanaraman Y, Lou K, Jayanti S, Ramani K (2003) A reconfigurable 3d engineering shape search system: Part i-shape representation. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 89–98

  38. Kang SB, Ikeuchi K (1991) Determining 3-d object pose using the complex extended gaussian image. In: IEEE computer society conference on Computer vision and pattern recognition, 1991. Proceedings CVPR’91. IEEE, pp 580–585

  39. Kauppinen H, Seppänen T, Pietikäinen M (1995) An experimental comparison of autoregressive and fourier-based descriptors in 2d shape classification. IEEE Trans Pattern Anal Mach Intell 17(2):201–207

    Article  Google Scholar 

  40. Kawamura S, Usui K, Furuya T, Ohbuchi Rx (2012) Local goemetrical feature with spatial context for shape-based 3d model retrieval. In: 3DOR, pp 55–58

  41. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3 d shape descriptors. In: Symposium on geometry processing, vol 6

  42. Kim H-K, Kim J-D (2000) Region-based shape descriptor invariant to rotation, scale and translation. Sig Proc Image Comm 16(1-2):87–93

    Article  Google Scholar 

  43. Kuang Z, Li Z, Jiang X, Liu Y, Li H (2015) Retrieval of non-rigid 3d shapes from multiple aspects. Comput Aided Des 58:13–23

    Article  Google Scholar 

  44. Laiche N, Larabi S, Ladraa F, Khadraoui Ax (2014) Curve norMalization for shape retrieval. Signal Process Image Commun 29(4):556–571

    Article  Google Scholar 

  45. Leng B, Xiong Z (2011) Modelseek: an effective 3d model retrieval system. Multimed Tools Appl 51(3):935–962

    Article  Google Scholar 

  46. Li B, Johan H (2013) 3d model retrieval using hybrid features and class information. Multimed Tools Appl 62(3):821–846

    Article  Google Scholar 

  47. Li P, Wang Q, Zhang L (2013) A novel earth mover’s distance methodology for image matching with gaussian mixture models ICCV

  48. Li S-S, Huang Y-D, Yang J-W (2013) Affine invariant ring fourier descriptors. In: International conference on wavelet analysis and pattern recognition, pp 62–66

  49. Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoué G, Nguyen HV, Ohbuchi R et al (2013) A comparison of methods for non-rigid 3d shape retrieval. Pattern Recogn 46(1):449–461

    Article  Google Scholar 

  50. Lian Z, Rosin PL, Sun X (2010) Rectilinearity of 3d meshes. Int J Comput Vis 89(2-3):130–151

    Article  Google Scholar 

  51. Lin CC, Chellappa R (1987) Classification of partial 2d shapes using fourier descriptors. IEEE Trans Pattern Anal Mach Intell 9(5):686–690

    Article  Google Scholar 

  52. Ling H, Jacobs DW (2005) Using the inner-distance for classification of articulated shapes. In: IEEE computer society conference on Computer vision and pattern recognition, 2005. CVPR 2005, vol 2. IEEE, pp 719–726

  53. Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  Google Scholar 

  54. Liu T-L, Geiger D (1999) Approximate tree matching and shape similarity. In: The proceedings of the seventh IEEE international conference on Computer vision, 1999, vol 1. IEEE, pp 456–462

  55. Lou K, Jayanti S, Iyer N, Kalyanaraman Y, Prabhakar S, Ramani K (2003) A reconfigurable 3d engineering shape search system: Part ii-database indexing, retrieval, and clustering. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 169–178

  56. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  57. Mémoli F, Sapiro G (2005) A theoretical and computational framework for isometry invariant recognition of point cloud data. Found Comput Math 5(3):313–347

    Article  MathSciNet  MATH  Google Scholar 

  58. Nanni L, Brahnam S, Lumini Ax (2012) Local phase quantization descriptor for improving shape retrieval/classification. Pattern Recogn Lett 33(16):2254–2260

    Article  Google Scholar 

  59. Novotni M, Klein R (2004) Shape retrieval using 3d zernike descriptors. Comput Aided Des 36(11):1047–1062

    Article  Google Scholar 

  60. Ohishi Y, Ohbuchi R (2013) Densely sampled local visual features on 3d mesh for retrieval. In: 2013 14th international workshop on Image analysis for multimedia interactive services (WIAMIS). IEEE, pp 1–4

  61. Ohkita Y, Ohishi Y, Furuya T, Ohbuchi R (2012) Non-rigid 3d model retrieval using set of local statistical features. In: 2012 IEEE international conference on Multimedia and expo workshops (ICMEW). IEEE, pp 593–598

  62. Osada R, Funkhouser T, Chazelle B, Dobkin D (2001) Matching 3d models with shape distributions. In: SMI 2001 international conference on Shape modeling and applications. IEEE, pp 154–166

  63. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph (TOG) 21(4):807–832

    Article  MathSciNet  MATH  Google Scholar 

  64. Papadakis P, Pratikakis I, Perantonis S, Theoharis T (2007) Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recogn 40(9):2437–2452

    Article  MATH  Google Scholar 

  65. Papadakis P, Pratikakis I, Theoharis T, Passalis G, Perantonis S (2008) 3d object retrieval using an efficient and compact hybrid shape descriptor. In: Eurographics workshop on 3d object retrieval

  66. Papadakis P, Pratikakis I, Theoharis T, Perantonis S (2010) Panorama: A 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. Int J Comput Vis 89(2-3):177–192

    Article  Google Scholar 

  67. Pedrosa GV, Batista MA, Barcelos CAZ (2013) Image feature descriptor based on shape salience points. Neurocomputing 120:156–163

    Article  Google Scholar 

  68. Pele O, Werman M (2009) Fast and robust earth mover’s distances. In: ICCV

  69. Rauber TW, Steiger-Garcao AS (1992) Shape description by unl fourier features-an application to handwritten character recognition. In: 11Th IAPR international conference on pattern recognition, pp 466–469

  70. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Article  MATH  Google Scholar 

  71. Ruggeri MR, Patanè G, Spagnuolo M, Saupe D (2010) Spectral-driven isometry-invariant matching of 3d shapes. Int J Comput Vis 89(2-3):248–265

    Article  Google Scholar 

  72. Schreck T, Scherer M, Walter M, Bustos B, Yoon SM, Kuijper A (2012) Graph-based combinations of fragment descriptors for improved 3d object retrieval. In: Proceedings of the 3rd multimedia systems conference. ACM, pp 23–28

  73. Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571

    Article  Google Scholar 

  74. Sharvit D, Chan J, Tek H, Kimia B (1998) Symmetry-based indexing of image databases. In: 1998. Proceedings. IEEE workshop on Content-based access of image and video libraries. IEEE , pp 56–62

  75. Shekar BH, Pilar B (2014) Shape representation and classification through pattern spectrum and local binary pattern–a decision level fusion approach. In: 2014 fifth international conference on Signal and image processing (ICSIP). IEEE, pp 218–224

  76. Shekar BH, Pilar B, Kittler J (2015) An unification of inner distance shape context and local binary pattern for shape representation and classification. In: Proceedings of the 2nd international conference on perception and machine intelligence. ACM, pp 46–55

  77. Shen W, Bai X, Hu R, Wang H, Latecki LJ (2011) Skeleton growing and pruning with bending potential ratio. Pattern Recogn 44(2):196–209

    Article  Google Scholar 

  78. Shen Y-T, Chen D-Y, Tian X-P, Ouhyoung M (2003) 3D model search engine based on lightfield descriptors. In: Eurographics

  79. Shih J-L, Chen H-Y (2009) A 3d model retrieval approach using the interior and exterior 3d shape information. Multimed Tools Appl 43(1):45–62

    Article  MathSciNet  Google Scholar 

  80. Shih J-L, Lee C-H, Wang JTa (2007) A new 3d model retrieval approach based on the elevation descriptor. Pattern Recogn 40(1):283–295

    Article  MATH  Google Scholar 

  81. Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The princeton shape benchmark. In: Shape modeling applications, 2004. proceedings. IEEE, pp 167–178

  82. Shu X, Wu X-J (2011) A novel contour descriptor for 2d shape matching and its application to image retrieval. Image Vis Comput 29(4):286–294

    Article  Google Scholar 

  83. Siddiqi K, Bouix S, Tannenbaum A, Zucker SW (2002) Hamilton-jacobi skeletons. Int J Comput Vis 48(3):215–231

    Article  MATH  Google Scholar 

  84. Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3-d models using medial surfaces. Mach Vis Appl 19 (4):261–275

    Article  MATH  Google Scholar 

  85. Sipiran I, Bustos B, Schreck T (2013) Data-aware 3d partitioning for generic shape retrieval. Comput Graph 37(5):460–472

    Article  Google Scholar 

  86. Sirin Y, Demirci MF (2014) Skeleton filling rate for shape recognition. In: 2014 22nd international conference on Pattern recognition (ICPR). IAPR, pp 4005–4009

  87. Söderkvist O (2001) Computer vision classification of leaves from swedish trees

  88. Sun J, Ovsjanikov M, Guibas L (2009) A concise and provably informative multi-scale signature based on heat diffusion. In: Computer graphics forum, vol 28. Wiley online library, pp 1383–1392

  89. Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. In: Shape modeling international, 2003. IEEE, pp 130–139

  90. Tam GKL, Lau RWH (2007) Deformable model retrieval based on topological and geometric signatures. IEEE Trans Vis Comput Graph 13(3):470–482

    Article  Google Scholar 

  91. Tangelder JWH, Veltkamp RC (2008) A survey of content based 3d shape retrieval methods. Multimed Tools Appl 39(3):441–471

    Article  Google Scholar 

  92. Van der Zwan M, Meiburg Y, Telea A (2013) A dense medial descriptor for image analysis. In: VISAPP (1), pp 285–293

  93. Van Otterloo PJ (1991) A Contour-oriented Approach to Shape Analysis. Prentice Hall International (UK) Ltd., Hertfordshire, UK

    MATH  Google Scholar 

  94. Vranic DV (2005) Desire: a composite 3d-shape descriptor. In: IEEE international conference on Multimedia and expo, 2005. ICME 2005. IEEE, pp 4–pp

  95. Vranić DV, Saupe D (2004) 3d model retrieval. In: Proc SCCG 2000, pp 3–6

  96. Wang Fan, Guibas LJ (2012) Supervised earth mover’s distance learning and its computer vision applications. In: Computer vision–ECCV 2012. Springer, pp 442–455

  97. Wang J, Bai X, You X, Liu W, Latecki LJ (2012) Shape matching and classification using height functions. Pattern Recogn Lett 33(2):134–143

    Article  Google Scholar 

  98. Wu J, Rehg JM (2008) Where am i: Place instance and category recognition using spatial pact. In: 2008. CVPR 2008. IEEE conference on Computer vision and pattern recognition. IEEE, pp 1–8

  99. Xie J, Heng P-A, Shah M (2008) Shape matching and modeling using skeletal context. Pattern Recogn 41(5):1756–1767

    Article  MATH  Google Scholar 

  100. Xu J, Zhang Z, Tung AK, Yu G (2012) Efficient and effective similarity search over probabilistic data based on earth mover’s distance. VLDB J Int J Very Large Data Bases 21(4):535–559

    Article  Google Scholar 

  101. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fatih Demirci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirin, Y., Demirci, M.F. 2D and 3D shape retrieval using skeleton filling rate. Multimed Tools Appl 76, 7823–7848 (2017). https://doi.org/10.1007/s11042-016-3422-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3422-2

Keywords

Navigation