Abstract
As an increasing number of digital images are generated, a demand for an efficient and effective image retrieval mechanisms grows. In this work, we present a new skeleton-based algorithm for 2D and 3D shape retrieval. The algorithm starts by drawing circles (spheres for 3D) of increasing radius around skeletons. Since each skeleton corresponds to the center of a maximally inscribed circle (sphere), this process results in circles (spheres) that are partially inside the shape. Computing the ratio between pixels that lie within the shape and the total number of pixels allows us to distinguish shapes with similar skeletons. Experimental evaluation of the proposed approach including a comprehensive comparison with the previous techniques demonstrates both effectiveness and robustness of our algorithm for shape retrieval using several 2D and 3D datasets.
Similar content being viewed by others
References
Akgul CB, Sankur B, Yemez Y, Schmitt F (2009) 3d model retrieval using probability density-based shape descriptors. IEEE Trans Pattern Anal Mach Intell 31 (6):1117–1133
Akimaliev M, Demirci MF (2015) Improving skeletal shape abstraction using multiple optimal solutions. Pattern Recogn 48(11):3504–3515
Andaló FA, Miranda PAV, Torres RDS, Falcão AX (2010) Shape feature extraction and description based on tensor scale. Pattern Recogn 43(1):26–36
Ankerst M, Kastenmüller G, Kriegel H-P, Seidl T (1999) 3d shape histograms for similarity search and classification in spatial databases. In: Advances in spatial databases. Springer, pp 207–226
Arbter K, Snyder WE, Burhardt H, Hirzinger G (1990) Application of affine-invariant fourier descriptors to recognition of 3-d objects. IEEE Trans Pattern Anal Mach Intell 12(7):640–647
Axenopoulos A, Litos G, Daras P (2011) 3d model retrieval using accurate pose estimation and view-based similarity. In: Proceedings of the 1st ACM international conference on multimedia retrieval. ACM, p 41
Belongie Serge, Malik Jitendra, Puzicha Jan (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24 (4):509–522
Ben-Chen M, Gotsman C (2008) Characterizing shape using conformal factors. In: 3DOR, pp 1–8
Bronstein AM, Bronstein MM, Bruckstein AM, Kimmel R (2008) Analysis of two-dimensional non-rigid shapes. Int J Comput Vis 78(1):67–88
Bustos B, Schreck T, Walter M, Barrios JM, Schaefer M, Keim D (2012) Improving 3d similarity search by enhancing and combining 3d descriptors. Multimed Tools Appl 58(1):81–108
Chang X, Yang Y, Hauptmann AG, Xing EP, Yu Y-L (2015) Semantic concept discovery for large-scale zero-shot event detection. In: Proceedings of IJCAI
Chang X, Yang Y, Xing E, Yu Y (2015) Complex event detection using semantic saliency and nearly-isotonic svm. In: Proceedings of the 32nd international conference on machine learning (ICML-15), pp 1348–1357
Chang X, Yu Y-L, Yang Y, Hauptmann AG (2015) Searching persuasively: Joint event detection and evidence recounting with limited supervision. In: Proceedings of the 23rd Annual ACM Conference on Multimedia Conference. ACM, pp 581–590
Chellappa R, Bagdazian R (1984) Fourier coding of image boundaries. IEEE Trans Pattern Anal Mach Intell 6(1):102–105
Chen D-Y, Tian X-P, Shen Y-T, Ouhyoung M (2003) On visual similarity based 3d model retrieval. In: Computer graphics forum, vol 22. Wiley online library, pp 223–232
Cohen S, Guibas L (1999) The earth mover’s distance under transformation sets. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2. IEEE, pp 1076–1083
Cornea ND, Demirci MF, Silver D, Shokoufandeh A, Dickinson SJ, Kantor PB (2005) 3d object retrieval using many-to-many matching of curve skeletons. In: Shape Modeling and Applications, 2005 International Conference. IEEE, pp 366–371
Daliri MR, Torre V (2008) Robust symbolic representation for shape recognition and retrieval. Pattern Recogn 41(5):1782–1798
Demirci MF, Shokoufandeh A, Keselman Y, Dickinson S, Bretzner L (2003) Many-to-many matching of scale-space feature hierarchies using metric embedding. In: Griffin LD, Lillholm M (eds) Scale Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 17–32
Demirci MF, Platel B, Shokoufandeh A, Florack L, Dickinson S (2009) The representation and matching of images using top points. J Math Imaging Vis 35 (2):103–116
Demirci MF, Osmanlioglu Y, Shokoufandeh A, Dickinson S (2011) Efficient many-to-many feature matching under the ℓ 1 norm. Comput Vis Image Underst 115(7):976–983
Donoser M, Bischof H (2013) Diffusion processes for retrieval revisited. In: 2013 IEEE conference on Computer vision and pattern recognition (CVPR). IEEE, pp 1320–1327
Eberly D (1994) A differential geometric approach to anisotropic diffusion. In: Bart M, Romeny TH (eds) Geometry-Driven Diffusion in Computer Vision, volume 1 of Computational Imaging and Vision. Springer, Netherlands, pp 371–392
Ebrahim Y, Ahmed M, Abdelsalam W, Chau S-C (2009) Shape representation and description using the hilbert curve. Pattern Recogn Lett 30(4):348–358
Eitz M, Richter R, Boubekeur T, Hildebrand K, Alexa M (2012) Sketch-based shape retrieval. ACM Trans Graph 31(4):31
Frejlichowski D (2011) A three-dimensional shape description algorithm based on polar-fourier transform for 3d model retrieval. In: Heyden A, Kahl F (eds) Image Analysis, volume 6688 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, pp 457–466
Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search engine for 3d models. ACM Trans Graph (TOG) 22 (1):83–105
Furuya T, Ohbuchi R (2009) Dense sampling and fast encoding for 3d model retrieval using bag-of-visual features. In: Proceedings of the ACM international conference on image and video retrieval. ACM, p 26
Gal R, Shamir A, Cohen-Or D (2007) Pose-oblivious shape signature. IEEE Trans Vis Comput Graph 13(2):261–271
Gopalan R, Turaga P, Chellappa R (2010) Articulation-invariant representation of non-planar shapes. In: Computer vision–ECCV 2010. Springer, pp 286–299
Granlund GH (1972) Fourier preprocessing for hand print character recognition. IEEE Trans Comput 21(2):195–201
Guocheng A, Fengjun Z, Hong’an W, Guozhong D (2010) Shape filling rate for silhouette representation and recognition. In: 2010 20th international conference on Pattern recognition (ICPR). IAPR, pp 507–510
Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques. ACM, pp 203–212
Horn BKP (1984) Extended gaussian images. IEEE Proc 72(12):1671–1686
Hu R-X, Jia W, Zhao Ya, Gui J (2012) Perceptually motivated morphological strategies for shape retrieval. Pattern Recogn 45(9):3222–3230
Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K (2005) Three-dimensional shape searching: state-of-the-art review and future trends. Comput Aided Des 37(5):509–530
Iyer N, Kalyanaraman Y, Lou K, Jayanti S, Ramani K (2003) A reconfigurable 3d engineering shape search system: Part i-shape representation. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 89–98
Kang SB, Ikeuchi K (1991) Determining 3-d object pose using the complex extended gaussian image. In: IEEE computer society conference on Computer vision and pattern recognition, 1991. Proceedings CVPR’91. IEEE, pp 580–585
Kauppinen H, Seppänen T, Pietikäinen M (1995) An experimental comparison of autoregressive and fourier-based descriptors in 2d shape classification. IEEE Trans Pattern Anal Mach Intell 17(2):201–207
Kawamura S, Usui K, Furuya T, Ohbuchi Rx (2012) Local goemetrical feature with spatial context for shape-based 3d model retrieval. In: 3DOR, pp 55–58
Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3 d shape descriptors. In: Symposium on geometry processing, vol 6
Kim H-K, Kim J-D (2000) Region-based shape descriptor invariant to rotation, scale and translation. Sig Proc Image Comm 16(1-2):87–93
Kuang Z, Li Z, Jiang X, Liu Y, Li H (2015) Retrieval of non-rigid 3d shapes from multiple aspects. Comput Aided Des 58:13–23
Laiche N, Larabi S, Ladraa F, Khadraoui Ax (2014) Curve norMalization for shape retrieval. Signal Process Image Commun 29(4):556–571
Leng B, Xiong Z (2011) Modelseek: an effective 3d model retrieval system. Multimed Tools Appl 51(3):935–962
Li B, Johan H (2013) 3d model retrieval using hybrid features and class information. Multimed Tools Appl 62(3):821–846
Li P, Wang Q, Zhang L (2013) A novel earth mover’s distance methodology for image matching with gaussian mixture models ICCV
Li S-S, Huang Y-D, Yang J-W (2013) Affine invariant ring fourier descriptors. In: International conference on wavelet analysis and pattern recognition, pp 62–66
Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoué G, Nguyen HV, Ohbuchi R et al (2013) A comparison of methods for non-rigid 3d shape retrieval. Pattern Recogn 46(1):449–461
Lian Z, Rosin PL, Sun X (2010) Rectilinearity of 3d meshes. Int J Comput Vis 89(2-3):130–151
Lin CC, Chellappa R (1987) Classification of partial 2d shapes using fourier descriptors. IEEE Trans Pattern Anal Mach Intell 9(5):686–690
Ling H, Jacobs DW (2005) Using the inner-distance for classification of articulated shapes. In: IEEE computer society conference on Computer vision and pattern recognition, 2005. CVPR 2005, vol 2. IEEE, pp 719–726
Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299
Liu T-L, Geiger D (1999) Approximate tree matching and shape similarity. In: The proceedings of the seventh IEEE international conference on Computer vision, 1999, vol 1. IEEE, pp 456–462
Lou K, Jayanti S, Iyer N, Kalyanaraman Y, Prabhakar S, Ramani K (2003) A reconfigurable 3d engineering shape search system: Part ii-database indexing, retrieval, and clustering. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp 169–178
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Mémoli F, Sapiro G (2005) A theoretical and computational framework for isometry invariant recognition of point cloud data. Found Comput Math 5(3):313–347
Nanni L, Brahnam S, Lumini Ax (2012) Local phase quantization descriptor for improving shape retrieval/classification. Pattern Recogn Lett 33(16):2254–2260
Novotni M, Klein R (2004) Shape retrieval using 3d zernike descriptors. Comput Aided Des 36(11):1047–1062
Ohishi Y, Ohbuchi R (2013) Densely sampled local visual features on 3d mesh for retrieval. In: 2013 14th international workshop on Image analysis for multimedia interactive services (WIAMIS). IEEE, pp 1–4
Ohkita Y, Ohishi Y, Furuya T, Ohbuchi R (2012) Non-rigid 3d model retrieval using set of local statistical features. In: 2012 IEEE international conference on Multimedia and expo workshops (ICMEW). IEEE, pp 593–598
Osada R, Funkhouser T, Chazelle B, Dobkin D (2001) Matching 3d models with shape distributions. In: SMI 2001 international conference on Shape modeling and applications. IEEE, pp 154–166
Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph (TOG) 21(4):807–832
Papadakis P, Pratikakis I, Perantonis S, Theoharis T (2007) Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recogn 40(9):2437–2452
Papadakis P, Pratikakis I, Theoharis T, Passalis G, Perantonis S (2008) 3d object retrieval using an efficient and compact hybrid shape descriptor. In: Eurographics workshop on 3d object retrieval
Papadakis P, Pratikakis I, Theoharis T, Perantonis S (2010) Panorama: A 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. Int J Comput Vis 89(2-3):177–192
Pedrosa GV, Batista MA, Barcelos CAZ (2013) Image feature descriptor based on shape salience points. Neurocomputing 120:156–163
Pele O, Werman M (2009) Fast and robust earth mover’s distances. In: ICCV
Rauber TW, Steiger-Garcao AS (1992) Shape description by unl fourier features-an application to handwritten character recognition. In: 11Th IAPR international conference on pattern recognition, pp 466–469
Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121
Ruggeri MR, Patanè G, Spagnuolo M, Saupe D (2010) Spectral-driven isometry-invariant matching of 3d shapes. Int J Comput Vis 89(2-3):248–265
Schreck T, Scherer M, Walter M, Bustos B, Yoon SM, Kuijper A (2012) Graph-based combinations of fragment descriptors for improved 3d object retrieval. In: Proceedings of the 3rd multimedia systems conference. ACM, pp 23–28
Sebastian TB, Klein PN, Kimia BB (2004) Recognition of shapes by editing their shock graphs. IEEE Trans Pattern Anal Mach Intell 26(5):550–571
Sharvit D, Chan J, Tek H, Kimia B (1998) Symmetry-based indexing of image databases. In: 1998. Proceedings. IEEE workshop on Content-based access of image and video libraries. IEEE , pp 56–62
Shekar BH, Pilar B (2014) Shape representation and classification through pattern spectrum and local binary pattern–a decision level fusion approach. In: 2014 fifth international conference on Signal and image processing (ICSIP). IEEE, pp 218–224
Shekar BH, Pilar B, Kittler J (2015) An unification of inner distance shape context and local binary pattern for shape representation and classification. In: Proceedings of the 2nd international conference on perception and machine intelligence. ACM, pp 46–55
Shen W, Bai X, Hu R, Wang H, Latecki LJ (2011) Skeleton growing and pruning with bending potential ratio. Pattern Recogn 44(2):196–209
Shen Y-T, Chen D-Y, Tian X-P, Ouhyoung M (2003) 3D model search engine based on lightfield descriptors. In: Eurographics
Shih J-L, Chen H-Y (2009) A 3d model retrieval approach using the interior and exterior 3d shape information. Multimed Tools Appl 43(1):45–62
Shih J-L, Lee C-H, Wang JTa (2007) A new 3d model retrieval approach based on the elevation descriptor. Pattern Recogn 40(1):283–295
Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The princeton shape benchmark. In: Shape modeling applications, 2004. proceedings. IEEE, pp 167–178
Shu X, Wu X-J (2011) A novel contour descriptor for 2d shape matching and its application to image retrieval. Image Vis Comput 29(4):286–294
Siddiqi K, Bouix S, Tannenbaum A, Zucker SW (2002) Hamilton-jacobi skeletons. Int J Comput Vis 48(3):215–231
Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3-d models using medial surfaces. Mach Vis Appl 19 (4):261–275
Sipiran I, Bustos B, Schreck T (2013) Data-aware 3d partitioning for generic shape retrieval. Comput Graph 37(5):460–472
Sirin Y, Demirci MF (2014) Skeleton filling rate for shape recognition. In: 2014 22nd international conference on Pattern recognition (ICPR). IAPR, pp 4005–4009
Söderkvist O (2001) Computer vision classification of leaves from swedish trees
Sun J, Ovsjanikov M, Guibas L (2009) A concise and provably informative multi-scale signature based on heat diffusion. In: Computer graphics forum, vol 28. Wiley online library, pp 1383–1392
Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. In: Shape modeling international, 2003. IEEE, pp 130–139
Tam GKL, Lau RWH (2007) Deformable model retrieval based on topological and geometric signatures. IEEE Trans Vis Comput Graph 13(3):470–482
Tangelder JWH, Veltkamp RC (2008) A survey of content based 3d shape retrieval methods. Multimed Tools Appl 39(3):441–471
Van der Zwan M, Meiburg Y, Telea A (2013) A dense medial descriptor for image analysis. In: VISAPP (1), pp 285–293
Van Otterloo PJ (1991) A Contour-oriented Approach to Shape Analysis. Prentice Hall International (UK) Ltd., Hertfordshire, UK
Vranic DV (2005) Desire: a composite 3d-shape descriptor. In: IEEE international conference on Multimedia and expo, 2005. ICME 2005. IEEE, pp 4–pp
Vranić DV, Saupe D (2004) 3d model retrieval. In: Proc SCCG 2000, pp 3–6
Wang Fan, Guibas LJ (2012) Supervised earth mover’s distance learning and its computer vision applications. In: Computer vision–ECCV 2012. Springer, pp 442–455
Wang J, Bai X, You X, Liu W, Latecki LJ (2012) Shape matching and classification using height functions. Pattern Recogn Lett 33(2):134–143
Wu J, Rehg JM (2008) Where am i: Place instance and category recognition using spatial pact. In: 2008. CVPR 2008. IEEE conference on Computer vision and pattern recognition. IEEE, pp 1–8
Xie J, Heng P-A, Shah M (2008) Shape matching and modeling using skeletal context. Pattern Recogn 41(5):1756–1767
Xu J, Zhang Z, Tung AK, Yu G (2012) Efficient and effective similarity search over probabilistic data based on earth mover’s distance. VLDB J Int J Very Large Data Bases 21(4):535–559
Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sirin, Y., Demirci, M.F. 2D and 3D shape retrieval using skeleton filling rate. Multimed Tools Appl 76, 7823–7848 (2017). https://doi.org/10.1007/s11042-016-3422-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-016-3422-2