[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Generalization of the Pignistic Transform for Partial Bet

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5590))

Abstract

The Transferable Belief Model is a powerful interpretation of belief function theory where decision making is based on the pignistic transform. Smets has proposed a generalization of the pignistic transform which appears to be equivalent to the Shapley value in the transferable utility model. It corresponds to the situation where the decision maker bets on several hypotheses by associating a subjective probability to non-singleton subsets of hypotheses. Naturally, the larger the set of hypotheses is, the higher the Shapley value is. As a consequence, it is impossible to make a decision based on the comparison of two sets of hypotheses of different size, because the larger set would be promoted. This behaviour is natural in a game theory approach of decision making, but, in the TBM framework, it could be useful to model other kinds of decision processes. Hence, in this article, we propose another generalization of the pignistic transform where the belief in too large focal elements is normalized in a different manner prior to its redistribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smets, P., Kennes, R.: The transferable belief model. Art. Int. 66(2), 191–234 (1994)

    Article  MATH  Google Scholar 

  2. Smets, P.: Constructing the pignistic probability function in a context of uncertainty. Uncertainty in Artificial Intelligence 5, 29–39 (1990)

    Article  MATH  Google Scholar 

  3. Smets, P.: No Dutch book can be built against the TBM even though update is not obtained by bayes rule of conditioning. In: Workshop on probabilistic expert systems, Societa Italiana di Statistica, Roma, pp. 181–204 (1993)

    Google Scholar 

  4. Shapley, L.: A Value for n-person Games. Contributions to the Theory of Games. In: Kuhn, H.W., Tucker, A.W. (eds.) Annals of Mathematical Studies, vol. 2(28), pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  5. Ramasso, E., Rombaut, M., Pellerin, D.: Forward-Backward-Viterbi procedures in the Transferable Belief Model for state sequence analysis using belief functions, ECSQARU, Hammamet, Tunisia (2007)

    Google Scholar 

  6. Xu, H., Smets, P.: Reasoning in Evidential Networks with Conditional Belief Functions. International Journal of Approximate Reasoning 14, 155–185 (1996)

    Article  MATH  Google Scholar 

  7. Ristic, B., Smets, P.: Kalman filters for tracking and classification and the transferable belief model. In: FUSION 2004, pp. 4–46 (2004)

    Google Scholar 

  8. Dennenberg, D.: Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  9. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing of uncertainty. Plenum Press (1988)

    Google Scholar 

  10. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  11. Cobb, B., Shenoy, P.: On the plausibility transformation method for translating belief function models to probability models. Int. J. of Approximate Reasoning (2005)

    Google Scholar 

  12. Cobb, B., Shenoy, P.: A Comparison of Methods for Transforming Belief Functions Models to Probability Models. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 255–266. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. International Journal on Man-Machine Studies 30, 525–536 (1989)

    Article  MATH  Google Scholar 

  14. Daniel, M.: Probabilistic Transformations of Belief Functions. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 539–551. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Sudano, J.: Pignistic Probability Transforms for Mixes of Low- and High- Probability Events. In: Int. Conf. on Information Fusion, Montreal, Canada (2001)

    Google Scholar 

  16. Dezert, J., Smarandache, F., Daniel, M.: The Generalized Pignistic Transformation. In: 7th International Conference on Information Fusion Stockholm, Sweden (2004)

    Google Scholar 

  17. Cuzzolin, F.: Two new Bayesian approximations of belief functions based on convex geometry. IEEE Trans. on Systems, Man, and Cybernetics - B 37(4), 993–1008 (2007)

    Article  Google Scholar 

  18. Grabisch, M.: K-order additive discrete fuzzy measures and their representation. Fuzzy sets and systems 92, 167–189 (1997)

    Article  MATH  Google Scholar 

  19. Miranda, P., Grabisch, M., Gil, P.: Dominance of capacities by k-additive belief functions: EJOR 175, 912–930 (2006)

    Google Scholar 

  20. Keynes, J.: Fundamental Ideas. A Treatise on Probability. Macmillan, Basingstoke (1921)

    MATH  Google Scholar 

  21. Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transformation. Int. J. Approximate Reasoning 38, 133–147 (2005)

    Article  MATH  Google Scholar 

  22. Aran, O., Burger, T., Caplier, A., Akarun, L.: A Belief-Based Sequential Fusion Approach for Fusing Manual and Non-Manual Signs. Pattern Recognition (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burger, T., Caplier, A. (2009). A Generalization of the Pignistic Transform for Partial Bet. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics