Abstract
Diffusion theory is already a vast domain of knowledge. This tutorial lecture does not cover all results; it presents in a coherent way an approach we have adopted and used in analysis of a series of models concerning evoluation of some traffic control mechanisms in computer, especially ATM, networks. Diffusion approximation is presented from engineer’s point of view, stressing its utility and commenting numerical problems of its implementation. Diffusion approximation is a method to model the behavior of a single queueing station or a network of stations. It allows one to include in the model general sevice times, general (also correlated) input streams and to investigate transient states, which, in presence of bursty streams (e.g. of multimedia transfers) in modern networks, are of interest.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atmaca, T., Czachórski, T., Pekergin, F.: A Diffusion Model of the Dynamic Effects of Closed-Loop Feedback Control Mechanisms in ATM Networks. In: 3rd IFIP Workshop on Performance Modelling and Evaluation of ATM Networks, Ilkley, UK, July 4-7 (1995); rozszerzona wersja w. Archiwum Informatyki Teoretycznej i Stosowanej (1), 41–56 (1999)
Burke, P.J.: The Output of a Queueing System. Operations Research 4(6), 699–704
Cox, R.P., Miller, H.D.: The Theory of Stochastic Processes. Chapman and Hall, London (1965)
Czachórski, T.: A Multiqueue Approximate Computer Performance Model with Priority Scheduling and System Overhead. Podstawy Sterowania 10(3), 223–240 (1980)
Czachórski, T.: A diffusion process with instantaneous jumps back and some its applications. Archiwum Informatyki Teoretycznej i Stosowanej 20(1-2), 27–46
Czachórski, T., Fourneau, J.M., Pekergin, F.: Diffusion Model of the Push-Out Buffer Management Policy. In: IEEE INFOCOM 1992, The Conference on Computer Communications, Florence (1992)
Czachórski, T.: A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bulletin of Polish Academy of Sciences, Technical Sciences 41(4) (1993)
Czachórski, T., Fourneau, J.M., Pekergin, F.: Diffusion model of an ATM Network Node. Bulletin of Polish Academy of Sciences, Technical Sciences 41(4) (1993)
Czachórski, T., Fourneau, J.M., Pekergin, F.: Diffusion Models to Study Nonstationary Traffic and Cell Loss in ATM Networks. In: ACM 2nd Workshop on ATM Networks, Bradford (July 1994)
Czachórski, T., Fourneau, J.M., Kloul, L.: Diffusion Approximation to Study the Flow Synchronization in ATM Networks. In: ACM 3rd Workshop on ATM Networks, Bradford (July 1995)
Czachórski, T., Fourneau, J.M., Pekergin, F.: The dynamics of cell flow and cell losses in ATM networks. Bulletin of Polish Academy of Sciences, Technical Sciences 43(4) (1995)
Czachórski, T., Pekergin, F.: Diffusion Models of Leaky Bucket and Partial Buffer Sharing Policy: A Transient Analysis. In: 4th IFIP Workshop on Performance Modelling and Evaluation of ATM Networks, Ilkley (1996); also in: Kouvatsos, D.: ATM Networks, Performance Modelling and Analysis. Chapman and Hall, London (1997)
Czachórski, T., Atmaca, T., Fourneau, J.-M., Kloul, L., Pekergin, F.: Switch queues – diffusion models (in polisch). Zeszyty Naukowe Politechniki /Sl/askiej, seria Informatyka (32) (1997)
Czachórski, T., Pekergin, F.: Transient diffusion analysis of cell losses and ATM multiplexer behaviour under correlated traffic. In: 5th IFIP Workshop on Performance Modelling and Evaluation of ATM Networks, Ilkley, UK, July 21-23 (1997)
Czachórski, T., Pastuszka, M., Pekergin, F.: A tool to model network transient states with the use of diffusion approximation. In: Performance Tools 1998, Palma de Mallorca, Hiszpania, wrzesie/n (1998)
Czachórski, T., Jedrus, S., Pastuszka, M., Pekergin, F.: Diffusion approximation and its numerical problems in implementation of computer network models. Archiwum Informatyki Teoretycznej i Stosowanej (1), 41–56 (1999)
Czachórski, T., Fourneau, J.-M., Kloul, L.: Diffusion Method Applied to a Handoff Queueing Scheme. Archiwum Informatyki Teoretycznej i Stosowanej (1), 41–56 (1999)
Czachórski, T., Pekergin, F.: Probabilistic Routing for Time-dependent Traffic: Analysis with the Diffusion and Fluid Approximations. In: IFIP ATM Workshop, Antwerp (1999)
Czachórski, T., Pekergin, F.: Modelling the time-dependent flows of virtual connections in ATM networks. Bulletin of Polish Academy of Sciences, Techical Sciences 48(4), 619–628 (2000)
Czachórski, T., Fourneau, J.-M., Jȩdruś, S., Pekergin, F.: Transient State Analysis in Cellular Networks: the use of Diffusion Approximation. In: QNETS 2000, Ilkley (2000)
Czachórski, T., Grochla, K., Pekergin, F.: Stability and dynamics of TCP-NCR(DCR) protocol in presence of UDP flows. In: García-Vidal, J., Cerdà-Alabern, L. (eds.) Euro-NGI 2007. LNCS, vol. 4396, pp. 241–254. Springer, Heidelberg (2007)
Czachórski, T., Grochla, K., Pekergin, F.: Un modèle d’approximation de diffusion pour la distribution du temps d’acheminement des paquets dans les réseaux de senseurs. In: Proc. of CFIP 2008, Les Arcs, Mars 25-28 (2008), Proceedings, edition electronique, http://hal.archives-ouvertes.fr/CFIP2008
Czachórski, T., Fourneau, J.-M., Nycz, T., Pekergin, F.: Diffusion approximation model of multiserver stations with losses. In: Proc. of Third International Workshop on Practical Applications of Stochastic Modelling PASM 2008, Palma de Mallorca, September 23 (2008); To appear also as an issue of Elsevier’s ENTCS (Electronic Notes in Theoretical Computer Science)
Czachórski, T., Nycz, T., Pekergin, F.: Transient states of priority queues – a diffusion approximation study. In: Proc. of The Fifth Advanced International Conference on Telecommunications AICT 2009, Venice, Mestre, Italy, May 24-28 (2009)
Czachórski, T., Grochla, K., Nycz, T., Pekergin, F.: A diffusion approximation model for wireless networks based on IEEE 802.11 standard submitted to COMCOM Special Journal Issue on Heterogeneous Networks: Traffic Engineering and Performance Evaluation of Computer Communications
Duda, A.: Diffusion Approximations for Time-Dependent Queueing Systems. IEEE J. on Selected Areas in Communications SAC-4(6) (September 1986)
Feller, W.: The parabolic differential equations and the associated semigroups of transformations. Annales Mathematicae 55, 468–519 (1952)
Feller, W.: Diffusion processes in one dimension. Transactions of American Mathematical Society 77, 1–31 (1954)
Filipiak, J., Pach, A.R.: Selection of Coefficients for a Diffusion-Equation Model of Multi-Server Queue. In: PERFORMANCE 1984, Proc. of The 10th International Symposium on Computer Performance. North Holland, Amsterdam (1984)
Gaver, D.P.: Observing stochastic processes, and approximate transform inversion. Operations Research 14(3), 444–459 (1966)
Gaver, D.P.: Diffusion Approximations and Models for Certain Congestion Problems. Journal of Applied Probability 5, 607–623 (1968)
Gelenbe, E.: On Approximate Computer Systems Models. J. ACM 22(2) (1975)
Gelenbe, E., Pujolle, G.: The Behaviour of a Single Queue in a General Queueing Network. Acta Informatica 7(fasc. 2), 123–136 (1976)
Gelenbe, E.: A non-Markovian diffusion model and its application to the approximation of queueing system behaviour, IRIA Rapport de Recherche no. 158 (1976)
Gelenbe, E.: Probabilistic models of computer systems. Part II. Acta Informatica 12, 285–303 (1979)
Gelenbe, E., Labetoulle, J., Marie, R., Metivier, M., Pujolle, G., Stewart, W.: Réseaux de files d’attente – modélisation et traitement numérique, Editions Hommes et Techniques, Paris (1980)
Gelenbe, E., Mang, X., Feng, Y.: A diffusion cell loss estimate for ATM with multiclass bursty traffic. In: Kouvatsos, D.D. (ed.) Performance Modelling and Evaluation of ATM Networks, vol. 2. Chapman and Hall, London (1996)
Gelenbe, E., Mang, X., Önvural, R.: Diffusion based statistical call admission control in ATM. Performance Evaluation 27-28, 411–436 (1996)
Halachmi, B., Franta, W.R.: A Diffusion Approximation to the Multi-Server Queue. Management Sci. 24(5), 522–529 (1978)
Heffes, H., Lucantoni, D.M.: A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer parformance. IEEE J. SAC SAC-4(6), 856–867 (1986)
Heyman, D.P.: An Approximation for the Busy Period of the M/G/1 Queue Using a Diffusion Model. J. of Applied Probility 11, 159–169 (1974)
Iglehart, D., Whitt, W.: Multiple Channel Queues in Heavy Traffic, Part I-III. Advances in Applied Probability 2, 150–177, 355–369 (1970)
Iglehart, D.: Weak Convergence in Queueing Theory. Advances in Applied Probability 5, 570–594 (1973)
Jouaber, B., Atmaca, T., Pastuszka, M., Czachórski, T.: Modelling the Sliding window Mechanism. In: The IEEE International Conference on Communications, ICC 1998, Atlanta, Georgia, USA, czerwiec 7-11, pp. 1749–1753 (1998)
Jouaber, B., Atmaca, T., Pastuszka, M., Czachórski, T.: A multi-barrier diffusion model to study performances of a packet-to-cell interface, art. S48.5, Session: Special applications in ATM Network Management. In: International Conference on Telecommunications ICT 1998, Porto Carras, Greece, czerwiec 22-25 (1998)
Kimura, T.: Diffusion Approximation for an M/G/m Queue. Operations Research 31(2), 304–321 (1983)
Kleinrock, L.: Queueing Systems. Theory, vol. I. Computer Applications, vol. II. Wiley, New York (1975, 1976)
Kobayashi, H.: Application of the diffusion approximation to queueing networks, Part 1: Equilibrium queue distributions. J. ACM 21(2), 316–328 (1974); Part 2: Nonequilibrium distributions and applications to queueing modeling. J. ACM 21(3), 459–469 (1974)
Kobayashi, H.: Modeling and Analysis: An Introduction to System Performance Evaluation Methodology. Addison Wesley, Reading (1978)
Kobayashi, H., Ren, Q.: A Diffusion Approximation Analysis of an ATM Statistical Multiplexer with Multiple Types of Traffic, Part I: Equilibrium State Solutions. In: Proc. of IEEE International Conf. on Communications, ICC 1993, Geneva, Switzerland, May 23-26, pp. 1047–1053 (1993)
Kulkarni, L.A.: Transient behaviour of queueing systems with correlated traffic. Performance Evaluation 27-28, 117–146 (1996)
Lee, D.-S., Li, S.-Q.: Transient analysis of multi-sever queues with Markov-modulated Poisson arrivals and overload control. Performance Evaluation 16, 49–66 (1992)
Maglaris, B., Anastassiou, D., Sen, P., Karlsson, G., Rubins, J.: Performance models of statistical multiplexing in packet video communications. IEEE Trans. on Communications 36(7), 834–844 (1988)
Newell, G.F.: Queues with time-dependent rates, Part I: The transition through saturation. J. Appl. Prob. 5, 436-451 (1968); Part II: The maximum queue and return to equilibrium, 579–590 (1968); Part III: A mild rush hour, 591–606 (1968)
Newell, G.F.: Applications of Queueing Theory. Chapman and Hall, London (1971)
Pastuszka, M.: Modelling transient states in computer networks with the use of diffusion approximation (in polish), Ph.D. Thesis, Silesian Technical University (Politechnika Ślaska), Gliwice (1999)
Reiser, M., Kobayashi, H.: Accuracy of the Diffusion Approximation for Some Queueing Systems. IBM J. of Res. Develop. 18, 110–124 (1974)
Sharma, S., Tipper, D.: Approximate models for the Study of Nonstationary Queues and Their Applications to Communication Networks. In: Proc. of IEEE International Conf. on Communications, ICC 1993, Geneva, Switzerland, May 23-26, pp. 352–358 (1993)
Stehfest, H.: Algorithm 368: Numeric inversion of Laplace transform. Comm. of ACM 13(1), 47–49 (1970)
Veillon, F.: Algorithm 486: Numerical Inversion of Laplace Transform. Comm. of ACM 17(10), 587–589 (1974); also: Veillon, F.: Quelques méthodes nouvelles pour le calcul numérique de la transformé inverse de Laplace, Th. Univ. de Grenoble (1972)
Zwingler, D.: Handbook of Differential Equations, pp. 623–627. Academic Press, Boston (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Czachórski, T., Pekergin, F. (2011). Diffusion Approximation as a Modelling Tool. In: Kouvatsos, D.D. (eds) Network Performance Engineering. Lecture Notes in Computer Science, vol 5233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02742-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-02742-0_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02741-3
Online ISBN: 978-3-642-02742-0
eBook Packages: Computer ScienceComputer Science (R0)