Abstract
We present a summary of a PhD thesis proposing efficient biclustering algorithms for time series gene expression data analysis, able to discover important aspects of gene regulation as anticorrelation and time-lagged relationships, and a scoring method based on statistical significance and similarity measures. The ability of the proposed algorithms to efficiently identify sets of genes with statistically significant and biologically meaningful expression patterns is shown to be instrumental in the discovery of relevant biological phenomena, leading to more convincing evidence of specific transcriptional regulatory mechanisms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)
Madeira, S.C., Teixeira, M.C., Sá-Correia, I., Oliveira, A.L.: Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics, March 21. IEEE Computer Society Digital Library, IEEE Computer Society, Los Alamitos (2008), http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.34
Madeira, S.C.: Efficient Biclustering Algorithms for Time Series Gene Expression Data Analysis. PhD thesis, Instituto Superior Técnico, Technical University of Lisbon (2008)
Androulakis, I.P., Yang, E., Almon, R.R.: Analysis of time-series gene expression data: Methods, challenges and opportunities. Annual Review of Biomedical Engineering 9, 205–228 (2007)
Madeira, S.C., Oliveira, A.L.: An efficient biclustering algorithm for finding genes with similar patterns in time-series expression data. In: Proc. of the 5th Asia Pacific Bioinformatics Conference, pp. 67–80. Imperial College Press (2007)
Sagot, M.F.: Spelling approximate repeated or common motifs using a suffix tree. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, p. 374. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Madeira, S.C., Oliveira, A.L. (2009). Efficient Biclustering Algorithms for Time Series Gene Expression Data Analysis. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_154
Download citation
DOI: https://doi.org/10.1007/978-3-642-02481-8_154
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02480-1
Online ISBN: 978-3-642-02481-8
eBook Packages: Computer ScienceComputer Science (R0)