[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analysis of Gene Expression Patterns Using Biclustering

  • Protocol
  • First Online:
Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1375))

Abstract

Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.ncbi.nlm.nih.gov.

  2. 2.

    http://www.geneontology.org.

References

  1. Kurella M, Hsiao L, Yoshida T, Randall J, Chow G, Sarang S, Jensen R, Gullans S (2001) Dna microarray analysis of complex biologic processes. J Am Soc Nephrol 12:1072–1078

    CAS  PubMed  Google Scholar 

  2. Kraljevic S, Stambrook PJ, Pavelic K (2004) Accelerating drug discovery. EMBO Rep 5:837–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu H, Luscombe N, Qian J, Gerstein M (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19:422–427

    Article  CAS  PubMed  Google Scholar 

  4. Gasch A, Eisen M et al (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol 3:1–22

    Article  Google Scholar 

  5. Tavazoie S, Hughes J, Campbell M, Cho R, Church G et al (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285

    Article  CAS  PubMed  Google Scholar 

  6. Grant R (2004) Computational genomics: theory and application. Horizon Bioscience, Cambridge

    Google Scholar 

  7. Li J, Wong L (2001) Emerging patterns and gene expression data. Genome Inform Ser 12:3–13

    CAS  Google Scholar 

  8. Alberts B, Johnson A et al (2002) Studying gene expression and function. In: Molecular biology of the cell, 4th edn

    Google Scholar 

  9. Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, Eisen M, Brown P, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6:281–297

    Article  CAS  PubMed  Google Scholar 

  11. Chipman H, Hastie TJ, Tibshirani R (2003) Clustering microarray data. In: Statistical analysis of gene expression microarray data, vol 1. Chapman & Hall/CRC, Boca Raton, pp 159–200

    Google Scholar 

  12. Ahmed HA, Mahanta P, Bhattacharyya D, Kalita JK (2011) Gerc: tree based clustering for gene expression data. In: 2011 I.E. 11th international conference on bioinformatics and bioengineering (BIBE), IEEE, pp 299–302

    Google Scholar 

  13. Mitra S, Banka H (2006) Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn 39:2464–2477

    Article  Google Scholar 

  14. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1:24–45

    Article  CAS  PubMed  Google Scholar 

  15. Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering and correlation clustering. ACM Trans Knowl Discov Data (TKDD) 3:1

    Article  Google Scholar 

  16. Mahanta P, Ahmed H, Bhattacharyya D, Kalita JK (2011) Triclustering in gene expression data analysis: a selected survey. In: 2011 2nd national conference on emerging trends and applications in computer science (NCETACS), IEEE pp 1–6

    Google Scholar 

  17. Roy S, Bhattacharyya DK, Kalita JK (2014) Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinf 15:S10

    Article  Google Scholar 

  18. Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, Shiloh Y, Elkon R (2005) Expander—an integrative program suite for microarray data analysis. BMC Bioinf 6:232

    Article  Google Scholar 

  19. Barkow S, Bleuler S, Prelić A, Zimmermann P, Zitzler E (2006) Bicat: a biclustering analysis toolbox. Bioinformatics 22:1282–1283

    Article  CAS  PubMed  Google Scholar 

  20. Gonçalves JP, Madeira SC, Oliveira AL (2009) Biggests: integrated environment for biclustering analysis of time series gene expression data. BMC Res Notes 2:124

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheng KO, Law NF, Siu WC, Lau T (2007) Bivisu: software tool for bicluster detection and visualization. Bioinformatics 23:2342–2344

    Article  CAS  PubMed  Google Scholar 

  22. Zhou F, Ma Q, Li G, Xu Y (2012) Qserver: a biclustering server for prediction and assessment of co-expressed gene clusters. PloS one 7:e32660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leung E, Bushel PR (2006) Page: phase-shifted analysis of gene expression. Bioinformatics 22:367–368

    Article  CAS  PubMed  Google Scholar 

  24. Roy S, Bhattacharyya DK, Kalita JK (2013) Cobi: pattern based co-regulated biclustering of gene expression data. Pattern Recogn Lett 34:1669–1678

    Article  Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  26. Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67:123–129

    Article  Google Scholar 

  27. Cheng Y, Church G (2000) Biclustering of expression data. In: Proceedings of 8th international conference on intelligent systems for molecular biology, ICISMB’00, vol 8, pp 93–103

    Google Scholar 

  28. Yang J, Wang H, Wang W, Yu P (2003) Enhanced biclustering on expression data. In: Proceedings of the 3rd IEEE symposium on bioinformatics and bioengineering, 2003, pp 321–327

    Google Scholar 

  29. Madeira S, Oliveira A (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinf 1:24–45

    Article  CAS  Google Scholar 

  30. Banka H, Mitra S (2006) Evolutionary biclustering of gene expressions. Ubiquity 7:1–12

    Article  Google Scholar 

  31. Aguilar-Ruiz J (2005) Shifting and scaling patterns from gene expression data. Bioinformatics 21:3840–3845

    Article  CAS  PubMed  Google Scholar 

  32. Nepomuceno J, Troncoso A, Aguilar-Ruiz J et al (2011) Biclustering of gene expression data by correlation-based scatter search. BioData Min 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pei J, Zhang X Cho M, Wang H, Yu P (2003) Maple: a fast algorithm for maximal pattern-based clustering. In: Proceedings of the 3rd IEEE international conference on data mining, 2003 (ICDM’03), IEEE, pp 259–266

    Google Scholar 

  34. Wang H, Chu F, Fan W, Yu P, Pei J (2004) A fast algorithm for subspace clustering by pattern similarity. In: Proceedings of the 16th international conference on scientific and statistical database management, 2004, IEEE, pp 51–60

    Google Scholar 

  35. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18:S136–S144

    Article  PubMed  Google Scholar 

  36. Roy S, Bhattacharyya DK, Kalita JK (2012) Deterministic approach for biclustering of co-regulated genes from gene expression data. In: Proceedings of the 16th international conference on KES12, FAIA, vol 243, pp 490–499

    Google Scholar 

  37. Eren K, Deveci M, Küçüktunç O, Çatalyürek ÜV (2013) A comparative analysis of biclustering algorithms for gene expression data. Brief Bioinform 14:279–292

    Google Scholar 

  38. Wang H, Wang W, Yang J, Yu P (2002) Clustering by pattern similarity in large data sets. In: Proceedings of the international conference on management of data. ACM SIGMOD’02, ACM, pp 394–405

    Google Scholar 

  39. Zhao Y, Yu J, Wang G, Chen L, Wang B, Yu G (2008) Maximal subspace coregulated gene clustering. IEEE Trans Knowl Data Eng 20:83–98

    Article  Google Scholar 

  40. Prelić A, Bleuler S et al (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22:1122–1129

    Article  PubMed  Google Scholar 

  41. Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6:281–297

    Article  CAS  PubMed  Google Scholar 

  42. Ji L, Mock K, Tan K (2006) Quick hierarchical biclustering on microarray gene expression data. In: Proceedings of the 6th IEEE symposium on bioinformatics and bioengineering, 2006 (BIBE’06), IEEE, pp 110–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roy, S., Bhattacharyya, D.K., Kalita, J.K. (2015). Analysis of Gene Expression Patterns Using Biclustering. In: Guzzi, P. (eds) Microarray Data Analysis. Methods in Molecular Biology, vol 1375. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_280

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_280

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3172-9

  • Online ISBN: 978-1-4939-3173-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics