[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Barycentric Algebras and Gene Expression

  • Conference paper
Fuzzy Logic and Applications (WILF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5571))

Included in the following conference series:

  • 922 Accesses

Abstract

Barycentric algebras have seen widespread application in the modeling of convex sets, semilattices, and quantum mechanics. Recently, they were developed further to encompass Boolean logic and if-then-else algebras. This paper discusses an application of barycentric algebras to systems biology. Here, they provide a calculus for the conversion from simplified Boolean models of gene transcription to fuzzy models that give a more realistic tracking of the biochemistry. Indeed, it appears that logic gates experimentally observed in cells actually follow the barycentric algebra format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  2. Bergman, G.M.: Actions of Boolean rings on sets. Algebra Universalis 28, 153–187 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Esteva, F., Godo, L., Montagna, F.: The LΠ and LΠ1/2 logics: two complete fuzzy systems joining Łukasiewicz and product logics. Arch. Math. Logic 40, 39–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)

    Article  Google Scholar 

  5. Gudder, S.P.: Convex structures and operational quantum mechanics. Comm. Math. Phys. 29, 249–264 (1973)

    Article  MathSciNet  Google Scholar 

  6. Ignatov, V.V.: Quasivarieties of convexors (in Russian). Izv. Vyssh. Uchebn. Zaved. Mat. 29, 12–14 (1985)

    MATH  Google Scholar 

  7. Klipp, E., Herwig, R., Kowald, C., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley, New York (2005)

    Book  Google Scholar 

  8. Manes, E.G.: Adas and the equational theory of if-then-else. Algebra Universalis 30, 373–394 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. McCarthy, J.A.: A basis for a mathematical theory of computation. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70. North-Holland, Amsterdam (1993)

    Google Scholar 

  10. Montagna, F.: An algebraic approach to propositional fuzzy logic. Journal of Logic, Language and Information 9, 91–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Montagna, F.: Subreducts of MV-algebras with product and product residuation. Algebra Universalis 53, 109–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neumann, W.D.: On the quasivariety of convex subsets of affine spaces. Arch. Math. 21, 11–16 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ostermann, F., Schmidt, J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie. J. Reine Angew. Math. 224, 44–57 (1966)

    MATH  Google Scholar 

  14. Romanowska, A.B., Smith, J.D.H.: Modal Theory. Heldermann, Berlin (1985)

    MATH  Google Scholar 

  15. Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras. Houston J. Math. 16, 431–448 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Romanowska, A.B., Smith, J.D.H.: Modes. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  17. Orłowska, E., Romanowska, A.B., Smith, J.D.H.: Abstract barycentric algebras. Fund. Informaticae 81, 257–273 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Skornyakov, L.A.: Stochastic algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 29, 3–11 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Setty, Y., Mayo, A.E., Surette, M.G., Alon, U.: Detailed map of a cis-regulatory input function. Proc. Nat. Acad. Sci. 100, 7702–7707 (2003)

    Article  Google Scholar 

  20. Stokes, T.: Sets with B-action and linear algebra. Algebra Universalis 39, 31–43 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stokes, T.: Radical classes of algebras with B-action. Algebra Universalis 40, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thieffry, D., Thomas, R.: Qualitative analysis of gene networks. In: Pac. Symp. Biocomput., vol. 3, pp. 77–88 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romanowska, A.B., Smith, J.D.H. (2009). Barycentric Algebras and Gene Expression. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02282-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02281-4

  • Online ISBN: 978-3-642-02282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics