Abstract
Barycentric algebras have seen widespread application in the modeling of convex sets, semilattices, and quantum mechanics. Recently, they were developed further to encompass Boolean logic and if-then-else algebras. This paper discusses an application of barycentric algebras to systems biology. Here, they provide a calculus for the conversion from simplified Boolean models of gene transcription to fuzzy models that give a more realistic tracking of the biochemistry. Indeed, it appears that logic gates experimentally observed in cells actually follow the barycentric algebra format.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC, Boca Raton (2006)
Bergman, G.M.: Actions of Boolean rings on sets. Algebra Universalis 28, 153–187 (1991)
Esteva, F., Godo, L., Montagna, F.: The LΠ and LΠ1/2 logics: two complete fuzzy systems joining Łukasiewicz and product logics. Arch. Math. Logic 40, 39–67 (2001)
Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)
Gudder, S.P.: Convex structures and operational quantum mechanics. Comm. Math. Phys. 29, 249–264 (1973)
Ignatov, V.V.: Quasivarieties of convexors (in Russian). Izv. Vyssh. Uchebn. Zaved. Mat. 29, 12–14 (1985)
Klipp, E., Herwig, R., Kowald, C., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley, New York (2005)
Manes, E.G.: Adas and the equational theory of if-then-else. Algebra Universalis 30, 373–394 (1993)
McCarthy, J.A.: A basis for a mathematical theory of computation. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70. North-Holland, Amsterdam (1993)
Montagna, F.: An algebraic approach to propositional fuzzy logic. Journal of Logic, Language and Information 9, 91–124 (2000)
Montagna, F.: Subreducts of MV-algebras with product and product residuation. Algebra Universalis 53, 109–137 (2005)
Neumann, W.D.: On the quasivariety of convex subsets of affine spaces. Arch. Math. 21, 11–16 (1970)
Ostermann, F., Schmidt, J.: Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie. J. Reine Angew. Math. 224, 44–57 (1966)
Romanowska, A.B., Smith, J.D.H.: Modal Theory. Heldermann, Berlin (1985)
Romanowska, A.B., Smith, J.D.H.: On the structure of barycentric algebras. Houston J. Math. 16, 431–448 (1990)
Romanowska, A.B., Smith, J.D.H.: Modes. World Scientific, Singapore (2002)
Orłowska, E., Romanowska, A.B., Smith, J.D.H.: Abstract barycentric algebras. Fund. Informaticae 81, 257–273 (2007)
Skornyakov, L.A.: Stochastic algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 29, 3–11 (1985)
Setty, Y., Mayo, A.E., Surette, M.G., Alon, U.: Detailed map of a cis-regulatory input function. Proc. Nat. Acad. Sci. 100, 7702–7707 (2003)
Stokes, T.: Sets with B-action and linear algebra. Algebra Universalis 39, 31–43 (1998)
Stokes, T.: Radical classes of algebras with B-action. Algebra Universalis 40, 73–85 (1998)
Thieffry, D., Thomas, R.: Qualitative analysis of gene networks. In: Pac. Symp. Biocomput., vol. 3, pp. 77–88 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Romanowska, A.B., Smith, J.D.H. (2009). Barycentric Algebras and Gene Expression. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-02282-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02281-4
Online ISBN: 978-3-642-02282-1
eBook Packages: Computer ScienceComputer Science (R0)