[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Measuring the Similarity of Geometric Graphs

  • Conference paper
Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

Abstract

What does it mean for two geometric graphs to be similar? We propose a distance for geometric graphs that we show to be a metric, and that can be computed by solving an integer linear program. We also present experiments using a heuristic distance function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier B.V., Amsterdam (2000)

    Chapter  Google Scholar 

  2. Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  3. Imai, H., Iri, M.: Polygonal approximations of a curve - formulations and algorithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. Elsevier B.V., Amsterdam (1988)

    Google Scholar 

  4. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM Journal on Computing 11(4), 676–686 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  6. Lucas, S., Vidal, E., Amiri, A., Hanlon, S., Amengual, J.C.: A comparison of syntactic and statistical techniques for off-line OCR. In: 2nd International Colloquium Grammatical Inference and Applications, pp. 168–179. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)

    Book  MATH  Google Scholar 

  8. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2) (2000), http://robotics.stanford.edu/~rubner

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheong, O., Gudmundsson, J., Kim, HS., Schymura, D., Stehn, F. (2009). Measuring the Similarity of Geometric Graphs. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics