Abstract
What does it mean for two geometric graphs to be similar? We propose a distance for geometric graphs that we show to be a metric, and that can be computed by solving an integer linear program. We also present experiments using a heuristic distance function.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier B.V., Amsterdam (2000)
Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cliffs (1982)
Imai, H., Iri, M.: Polygonal approximations of a curve - formulations and algorithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. Elsevier B.V., Amsterdam (1988)
Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM Journal on Computing 11(4), 676–686 (1982)
Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8), 1200–1214 (2006)
Lucas, S., Vidal, E., Amiri, A., Hanlon, S., Amengual, J.C.: A comparison of syntactic and statistical techniques for off-line OCR. In: 2nd International Colloquium Grammatical Inference and Applications, pp. 168–179. Springer, Heidelberg (1994)
Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)
Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2) (2000), http://robotics.stanford.edu/~rubner
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cheong, O., Gudmundsson, J., Kim, HS., Schymura, D., Stehn, F. (2009). Measuring the Similarity of Geometric Graphs. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-02011-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02010-0
Online ISBN: 978-3-642-02011-7
eBook Packages: Computer ScienceComputer Science (R0)