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Abstract. What does it mean for two geometric graphs to be similar?
We propose a distance for geometric graphs that we show to be a metric,
and that can be computed by solving an integer linear program. We also
present experiments using a heuristic distance function.

1 Introduction

Computational geometry has studied the matching and analysis of geometric
shapes from a theoretical perspective and developed efficient algorithms mea-
suring the similarity of geometric objects. Two objects are similar if they do
not differ much geometrically. A survey by Alt and Guibas [1] describes the sig-
nificant body of results obtained by researchers in computational geometry in
this area.

This paradigm fits a number of practical shape matching problems quite well,
such as the recognition of symmetries in molecules, or the self-alignment of a
satellite based on star patterns. Other pattern recognition problems, however,
seem to require a different definition of “matching.” For instance, recognizing
logos, Egyptian hieroglyphics, Chinese characters, or electronic components in
a circuit diagram are typical examples where this is the case. The same “pat-
tern” can appear in a variety of shapes that differ geometrically. What remains
invariant, however, is the “combinatorial” structure of the pattern.

We propose to consider such patterns as geometric graphs, that is, planar
graphs embedded into the plane with straight edges. Two geometric graphs can
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be considered similar if both the underlying graph and the geometry of the planar
embedding are “similar.” The distance measures considered in computational
geometry, such as the Hausdorff distance, Fréchet distance, or the symmetric
difference, do not seem to apply to geometric graphs.

Pattern recognition systems that combine a combinatorial component with a
geometric component are already used in practice—in fact, syntactic or struc-
tural pattern recognition is based on exactly this idea: A syntactic recognizer
decomposes the pattern into geometric primitives and makes conclusions based
on the appearance and relative position of these primitives [2,7]. While attrac-
tive from a theoretical point of view, syntactic recognizers have not been able
to compete with numerical or AI techniques for character recognition [6]. In
general, the pattern recognition community may be said to consider graph rep-
resentations as expressive, but too time-consuming, as subgraph isomorphism in
general is known to be intractable.

An established measure of similarity between (labeled) graphs is the edit dis-
tance. The idea of an edit distance is very intuitive: To measure the difference
between two objects, measure how much one object has to be changed to be
transformed into the other object. To define an edit distance, one therefore de-
fines a set of allowed operations, each associated with a cost. An edit sequence
from object A to object B is a finite sequence of allowed operations that trans-
forms A into B. The distance between A and B is the minimal cost of an edit
sequence from A to B.

The edit distance originally stems from string matching where the allowed
operations are insertion, deletion and substitution of characters. The edit dis-
tance of strings can be computed efficiently, and the string edit distance is used
widely, for instance in computational biology.

Justice and Hero [5] defined an edit distance for vertex-labeled graphs that
additionally allows relabeling of vertices, and give an integer linear programming
formulation of the edit distance. The edit operations are insertion and deletion
of vertices, insertion and deletion of edges, and a change of a vertex label.

It is natural to try to define an edit distance for geometric graphs as well.
Simply considering a geometric graph as a graph whose vertices are labeled
with their coordinates is not sufficient, as the cost of inserting and deleting
an edge should also be dependent on the length of the edge. This leads to the
following operations: Insertions and deletions of vertices, translations of vertices,
and insertions and deletions of edges. However, it is difficult to give bounds on
the length of an edit sequence: vertices can move several times to make insertions
and deletions cheaper. We give some examples in the following section.

This leads us to define another graph distance function in Section 3. It is not
an edit distance, and so we need to prove explicitly that it is a metric. We also
give an integer linear programming formulation that allows us to compute our
distance for small graphs with an ILP solver. Unfortunately, we do not know how
to compute or even approximate our graph distance for larger graphs. In fact, we
give two reductions from NP-hard problems, but both result in non-“practical”
instances of the problem.


