[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5330))

Abstract

Nominal techniques are based on the idea of sets with a finitely-supported atoms-permutation action.

We consider the idea of nominal renaming sets, which are sets with a finitely-supported atoms-renaming action; renamings can identify atoms, permutations cannot. We show that nominal renaming sets exhibit many of the useful qualities found in (permutative) nominal sets; an elementary sets-based presentation, inductive datatypes of syntax up to binding, cartesian closure, and being a topos. Unlike is the case for nominal sets, the notion of names-abstraction coincides with functional abstraction. Thus we obtain a concrete presentation of sheaves on the category of finite sets in the form of a category of sets with structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for storage. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Brunner, N.: 75 years of independence proofs by Fraenkel-Mostowski permutation models. Mathematica Japonica 43, 177–199 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Bucalo, A., Honsell, F., Miculan, M., Scagnetto, I., Hofmann, M.: Consistency of the theory of contexts. Journal of Functional Programming 16(3), 327–395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Despeyroux, J.: A higher-order specification of the π–calculus. In: IFIP TCS, pp. 425–439 (2000)

    Google Scholar 

  5. Despeyroux, J., Felty, A.P., Hirschowitz, A.: Higher-order abstract syntax in COQ. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 124–138. Springer, Heidelberg (2005)

    Google Scholar 

  6. Despeyroux, J., Hirschowitz, A.: Higher-order abstract syntax with induction in COQ. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 159–173. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: LICS 1999, pp. 193–202. IEEE, Los Alamitos (1999)

    Google Scholar 

  8. Fiore, M.P., Staton, S.: A congruence rule format for name-passing process calculi from mathematical structural operational semantics. In: LICS 2006, pp. 49–58. IEEE, Los Alamitos (2006)

    Google Scholar 

  9. Gabbay, M.J.: A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis, Cambridge, UK (2000)

    Google Scholar 

  10. Gabbay, M.J.: A General Mathematics of Names. Information and Computation 205, 982–1011 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabbay, M.J.: Nominal renaming sets. Technical Report HW-MACS-TR-0058, Heriot-Watt University (2007), http://www.gabbay.org.uk/papers.html#nomrs-tr

  12. Gabbay, M.J., Mathijssen, A.: Capture-avoiding Substitution as a Nominal Algebra. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 198–212. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding (journal version). Formal Aspects of Computing 13(3–5), 341–363 (2001)

    MATH  Google Scholar 

  14. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax involving binders. In: 14th Annual Symposium on Logic in Computer Science, pp. 214–224. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  15. Hirschkoff, D.: A full formalization of pi-calculus theory in the Calculus of Constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  16. Hofmann, M.: Semantical analysis of higher-order abstract syntax. In: 14th Annual Symposium on Logic in Computer Science, pp. 204–213. IEEE, Los Alamitos (1999)

    Google Scholar 

  17. Honsell, F., Miculan, M., Scagnetto, I.: An axiomatic approach to metareasoning on nominal algebras in HOAS. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 963–978. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Journal of Automated Reasoning 23(3-4), 373–409 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS, vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Shinwell, M.R.: The Fresh Approach: Functional Programming with Names and Binders. PhD thesis, Computer Laboratory, University of Cambridge (December 2004)

    Google Scholar 

  21. Shinwell, M.R., Pitts, A.M., Gabbay, M.J.: FreshML: Programming with binders made simple. In: ICFP 2003. SIGPLAN Not., vol. 38(9), pp. 263–274. ACM Press, New York (2003)

    Google Scholar 

  22. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342(1), 28–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shinwell, M.R., Pitts, A.M.: Fresh objective Caml user manual. Technical Report UCAM-CL-TR-621, University of Cambridge (2005)

    Google Scholar 

  24. Staton, S.: Name-passing process calculi: operational models and structural operational semantics. PhD thesis, University of Cambridge (2007)

    Google Scholar 

  25. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 38–53. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabbay, M.J., Hofmann, M. (2008). Nominal Renaming Sets. In: Cervesato, I., Veith, H., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2008. Lecture Notes in Computer Science(), vol 5330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89439-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89439-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89438-4

  • Online ISBN: 978-3-540-89439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics