Abstract
A formalisation of π-calculus in the Coq system is presented. Based on a de Bruijn notation for names, our implementation exploits the mechanisation of some proof techniques described by Sangiorgi in [San95b] to derive several results of classical π-calculus theory, including congruence, structural equivalence and the replication theorems. As the proofs are described, insight is given to the main implementational issues that arise in our study, without entering too much the technical details. Possible extensions of this work include the full verification for the “functions as processes” paradigm, as well as the design of a system to check bisimilarities for processes.
Preview
Unable to display preview. Download preview PDF.
References
S. Abramsky. The lazy lambda calculus. Research Topics in Functional Programming, pages 65–116, 1989.
R. Amadio, L Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. In CONCUR '96, number 1119 in LNCS, 1996.
O. Ait-Mohamed. Vérification de I'équivalence du π-calcul dans HOL. Rapport de recherche 2412, INRIA-Lorraine, November 1994. (In French).
O. Ait-Mohamed. PIC: A proof checker for the π-calculus in Higher Order Logic. Technical report, INRIA-Lorraine, 1995.
Simon J. Ambler. A de Bruijn notation for the π-calculus. Technical Report 569, Dept. of Computer Science, Queen Mary and Westfield College, London, May 1991
B. Barras, S. Boutin, C. Cornes, J. Courant, JC. Filliâtre, E. Gimenez, H. Herbelin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saïbi, and B. Werner. The Coq Proof Assistant Reference Manual. Projet Coq, INRIA Rocquencourt / CNRS-ENS Lyon, 1996.
J. Bertot, Y. Bertot, Y. Coscoy, H. Goguen, and F. Montagnac. User Guide to the CtCoq Proof Environment. INRIA, Sophia-Antipolis, February 1996.
Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In Proceedings of STACS, LNCS, Sendai (Japan), April 1994.
S. Boutin. Using reflection to build efficient and certified decision procedures. Unpublished — available at http://pauillac.inria.fr/ ~boutin/publis.html, 1996.
N.G. de Bruijn. Lambda Calculus Notation with Nameless Dummies: a Tool for Automatic Formula Manipulation, with Application to the CurchRosser Theorem. In Indagationes Mathematicae, volume 34, pages 381–392. 1972.
E. Giménez. Un calcul de constructions infinies et son application à la vérification de systèmes communicants. PhD thesis, E.N.S. Lyon, 1996.
D. Hirschkoff. Up to context proofs for the π-calculus in the Coq system. Technical Report 97–82, CERMICS, Noisy-le-Grand, January 1997.
G. Huet. Residual theory in λ-calculus: A formal development. Technical Report 2009, INRIA, Rocquencourt — France, Août 1993.
J. Mc Kinna and R. Pollack. Pure Type Systems Formalized. In Proceedings of TLCA'93, volume 664 of LNCS Springer Verlag, 1993.
T. F. Melham. A mechanized theory of the π-calculus in HOL. Nordic Journal of Computing, 1(1):50–76, 1994.
T. F. Melham and A. Gordon. Five Axioms of Alpha-Conversion. In Proceedings of TPHOL'96, volume 1125 of LNCS. Springer Verlag, 1996.
R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECSLFCS-91-180 LFCS, Dept. of Computer Science, Un. of Edinburgh, 1991.
D. Miller. The π-calculus as a theory in linear logic: Preliminary results. In E. Lamma and P. Mello, editors, Proceedings of the Workshop on Extensions to Logic Programming, volume 660 of Lecture Notes in Computer Science, pages 242–265. Springer-Verlag, 1992.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II. Information and Computation, 100:1–77, September 1992.
M. Nesi. A formalisation of the CCS process algebra in higher order logic. Technical Report 278, Computer Laboratory, University of Cambridge, December 1992.
U. Nestmann and B. C. Pierce. Decoding choice encodings. In Proceedings of CONCUR '96, number 1119, August 1996.
B.C. Pierce. Programming in the Pi-Calculus (Tutorial Notes). Computer Laboratory, Cambridge-UK, November 1995.
D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR2515, INRIA — Sophia Antipolis, 1995.
Davide Sangiorgi. On the bisimulation proof method. Revised version of Technical Report ECS-LFCS-94-299, University of Edinburgh, 1994. An extended abstract can be found in Proc. of MFCS'95, LNCS 969, 1995.
A. Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–325, 1988.
B. Werner. Une théorie des constructions inductives. Thèse de doctorat, Université Paris 7, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hirschkoff, D. (1997). A full formalisation of π-calculus theory in the calculus of constructions. In: Gunter, E.L., Felty, A. (eds) Theorem Proving in Higher Order Logics. TPHOLs 1997. Lecture Notes in Computer Science, vol 1275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028392
Download citation
DOI: https://doi.org/10.1007/BFb0028392
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63379-2
Online ISBN: 978-3-540-69526-4
eBook Packages: Springer Book Archive