[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A full formalisation of π-calculus theory in the calculus of constructions

  • Conference paper
  • First Online:
Theorem Proving in Higher Order Logics (TPHOLs 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1275))

Included in the following conference series:

Abstract

A formalisation of π-calculus in the Coq system is presented. Based on a de Bruijn notation for names, our implementation exploits the mechanisation of some proof techniques described by Sangiorgi in [San95b] to derive several results of classical π-calculus theory, including congruence, structural equivalence and the replication theorems. As the proofs are described, insight is given to the main implementational issues that arise in our study, without entering too much the technical details. Possible extensions of this work include the full verification for the “functions as processes” paradigm, as well as the design of a system to check bisimilarities for processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramsky. The lazy lambda calculus. Research Topics in Functional Programming, pages 65–116, 1989.

    Google Scholar 

  2. R. Amadio, L Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. In CONCUR '96, number 1119 in LNCS, 1996.

    Google Scholar 

  3. O. Ait-Mohamed. Vérification de I'équivalence du π-calcul dans HOL. Rapport de recherche 2412, INRIA-Lorraine, November 1994. (In French).

    Google Scholar 

  4. O. Ait-Mohamed. PIC: A proof checker for the π-calculus in Higher Order Logic. Technical report, INRIA-Lorraine, 1995.

    Google Scholar 

  5. Simon J. Ambler. A de Bruijn notation for the π-calculus. Technical Report 569, Dept. of Computer Science, Queen Mary and Westfield College, London, May 1991

    Google Scholar 

  6. B. Barras, S. Boutin, C. Cornes, J. Courant, JC. Filliâtre, E. Gimenez, H. Herbelin, G. Huet, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saïbi, and B. Werner. The Coq Proof Assistant Reference Manual. Projet Coq, INRIA Rocquencourt / CNRS-ENS Lyon, 1996.

    Google Scholar 

  7. J. Bertot, Y. Bertot, Y. Coscoy, H. Goguen, and F. Montagnac. User Guide to the CtCoq Proof Environment. INRIA, Sophia-Antipolis, February 1996.

    Google Scholar 

  8. Y. Bertot, G. Kahn, and L. Théry. Proof by pointing. In Proceedings of STACS, LNCS, Sendai (Japan), April 1994.

    Google Scholar 

  9. S. Boutin. Using reflection to build efficient and certified decision procedures. Unpublished — available at http://pauillac.inria.fr/ ~boutin/publis.html, 1996.

    Google Scholar 

  10. N.G. de Bruijn. Lambda Calculus Notation with Nameless Dummies: a Tool for Automatic Formula Manipulation, with Application to the CurchRosser Theorem. In Indagationes Mathematicae, volume 34, pages 381–392. 1972.

    Google Scholar 

  11. E. Giménez. Un calcul de constructions infinies et son application à la vérification de systèmes communicants. PhD thesis, E.N.S. Lyon, 1996.

    Google Scholar 

  12. D. Hirschkoff. Up to context proofs for the π-calculus in the Coq system. Technical Report 97–82, CERMICS, Noisy-le-Grand, January 1997.

    Google Scholar 

  13. G. Huet. Residual theory in λ-calculus: A formal development. Technical Report 2009, INRIA, Rocquencourt — France, Août 1993.

    Google Scholar 

  14. J. Mc Kinna and R. Pollack. Pure Type Systems Formalized. In Proceedings of TLCA'93, volume 664 of LNCS Springer Verlag, 1993.

    Google Scholar 

  15. T. F. Melham. A mechanized theory of the π-calculus in HOL. Nordic Journal of Computing, 1(1):50–76, 1994.

    Google Scholar 

  16. T. F. Melham and A. Gordon. Five Axioms of Alpha-Conversion. In Proceedings of TPHOL'96, volume 1125 of LNCS. Springer Verlag, 1996.

    Google Scholar 

  17. R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECSLFCS-91-180 LFCS, Dept. of Computer Science, Un. of Edinburgh, 1991.

    Google Scholar 

  18. D. Miller. The π-calculus as a theory in linear logic: Preliminary results. In E. Lamma and P. Mello, editors, Proceedings of the Workshop on Extensions to Logic Programming, volume 660 of Lecture Notes in Computer Science, pages 242–265. Springer-Verlag, 1992.

    Google Scholar 

  19. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and II. Information and Computation, 100:1–77, September 1992.

    Google Scholar 

  20. M. Nesi. A formalisation of the CCS process algebra in higher order logic. Technical Report 278, Computer Laboratory, University of Cambridge, December 1992.

    Google Scholar 

  21. U. Nestmann and B. C. Pierce. Decoding choice encodings. In Proceedings of CONCUR '96, number 1119, August 1996.

    Google Scholar 

  22. B.C. Pierce. Programming in the Pi-Calculus (Tutorial Notes). Computer Laboratory, Cambridge-UK, November 1995.

    Google Scholar 

  23. D. Sangiorgi. Lazy functions and mobile processes. Technical Report RR2515, INRIA — Sophia Antipolis, 1995.

    Google Scholar 

  24. Davide Sangiorgi. On the bisimulation proof method. Revised version of Technical Report ECS-LFCS-94-299, University of Edinburgh, 1994. An extended abstract can be found in Proc. of MFCS'95, LNCS 969, 1995.

    Google Scholar 

  25. A. Stoughton. Substitution revisited. Theoretical Computer Science, 59:317–325, 1988.

    Google Scholar 

  26. B. Werner. Une théorie des constructions inductives. Thèse de doctorat, Université Paris 7, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elsa L. Gunter Amy Felty

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirschkoff, D. (1997). A full formalisation of π-calculus theory in the calculus of constructions. In: Gunter, E.L., Felty, A. (eds) Theorem Proving in Higher Order Logics. TPHOLs 1997. Lecture Notes in Computer Science, vol 1275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0028392

Download citation

  • DOI: https://doi.org/10.1007/BFb0028392

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63379-2

  • Online ISBN: 978-3-540-69526-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics