[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Co-occurrence Matrixes for the Quality Assessment of Coded Images

  • Conference paper
Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5163))

Included in the following conference series:

Abstract

Intrinsic nonlinearity complicates the modeling of perceived quality of digital images, especially when using feature-based objective methods. The research described in this paper indicates that models from Computational Intelligence can predict quality and cope with multi-dimensional data characterized by complex perceptual relationships. A reduced-reference scheme exploits Support Vector Machines (SVMs) to assess the degradation in perceived image quality induced by three different distortion types: JPEG compression, white noise, and Gaussian blur. First, an objective description of the images is obtained by exploiting the co-occurrence matrix and its features; then, the SVM supports the nonlinear mapping between the objective description and the quality evaluation. Experimental results confirm the validity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 97.00
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, Z., Sheikh, H.R., Bovik, A.C.: Objective video quality assessment. In: Furth, B., Marques, O. (eds.) The Handbook of Video Databases: Design and Applications. CRC Press, Boca Raton (2003)

    Google Scholar 

  2. International Telecommunication Union: Methodology for the subjective assessment of the quality of television pictures (1995)

    Google Scholar 

  3. Wang, Z., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithm. IEEE Trans. Image Processing 15, 3441–3452 (2006)

    Google Scholar 

  4. Yeh, E.M., Kokaram, A.C., Kingsbury, N.G.: Perceptual distortion measure for edgelike artifacts in image sequences. In: Proc. The 3rd International Conference on Human Vision and Electronic Imaging, SPIE, pp. 160–172 (1998)

    Google Scholar 

  5. Karunasekera, S.A., Kingsbury, N.G.: A distortion measure for blocking artifacts in images based on human visual sensitivity. IEEE Trans. Image Processing 4, 713–724 (1995)

    Article  Google Scholar 

  6. Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Proc. SPIE Human Vision and Electronic Imaging X, vol. 5666, pp. 149–159 (2005)

    Google Scholar 

  7. Gastaldo, P., Zunino, R., Heynderickx, I., Vicario, E.: Objective quality assessment of displayed images by using neural networks. Signal Processing: Image Communication 20, 643–661 (2005)

    Article  Google Scholar 

  8. Gastaldo, P., Zunino, R.: Neural networks for the no-reference assessment of perceived quality. Journal of Electronic Imaging 14, 033004/1–11 (2005)

    Article  Google Scholar 

  9. Gastaldo, P., Parodi, G., Redi, J., Zunino, R.: No-reference quality assessment of JPEG images by using cbp neural networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 564–572. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. On Systems, Man and Cybernetics SMC-3, 610–621 (1973)

    Article  Google Scholar 

  11. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: Live image quality assessment database, http://live.ece.utexas.edu/research/quality

  13. Bartlett, P., Boucheron, S., Lugosi, G.: Model selection and error estimation. Machine Learning 48, 85–113 (2002)

    Article  MATH  Google Scholar 

  14. Anguita, D., Ridella, S., Rivieccio, F., Zunino, R.: Hyperparameter tuning criteria for support vector classifiers. Neurocomputing 55, 109–134 (2003)

    Article  Google Scholar 

  15. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 226–239 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Redi, J., Gastaldo, P., Zunino, R., Heynderickx, I. (2008). Co-occurrence Matrixes for the Quality Assessment of Coded Images. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87536-9_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87535-2

  • Online ISBN: 978-3-540-87536-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics