[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

No-reference image quality assessment in complex-shearlet domain

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The field of image quality measure (IQM) is growing rapidly in recent years. In particular, there was a significant progress in no-reference (NR) IQM methods. Natural scenes have certain statistical properties which vary in the presence of distortion. The statistical changes represent the loss of naturalness and can be efficiently quantified using shearlet transformation of images. In this paper, a general-purpose NR IQM approach is proposed based on the statistical characteristics of natural images in shearlet domain. The method utilizes a set of distortion-sensitive features extracted from statistical properties of shearlet coefficients. Phase and amplitude of an image contain important perceptual information; therefore, a complex version of the shearlet transform is employed to take advantage of phase and amplitude features in quality estimation. In quality prediction step, the features are used to train image classification and quality prediction models using a support vector machine. The experimental results show that the proposed NR IQM is highly correlated with subjective assessment and outperforms several full-reference and state-of-art NR IQMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, W., Kuo, C.C.J.: Perceptual visual quality metrics: a survey. J. Vis. Commun. Image Represent. 22(4), 297–312 (2011)

    Article  Google Scholar 

  2. Soundararajan, R., Bovic, A.C.: Survey of information theory in visual quality assessment. Signal Image Video Process. 7(3), 391–401 (2013)

    Article  Google Scholar 

  3. Rezazadeh, S., Coulombe, S.: A novel discrete wavelet transform framework for full reference image quality assessment. Signal Image Video Process. 7(3), 559–573 (2013)

    Article  Google Scholar 

  4. Abdelouahad, A.A., Hassouni, M.E., Cherifi, H., Aboutajdine, D.: Reduced reference image quality assessment based on statistics in empirical mode decomposition domain. Signal Image Video Process. 8(8), 1663–1680 (2014)

    Article  Google Scholar 

  5. Li, J., Zhou, L., Yan, J., Deng, D., Qu, T., Xie, G.: No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks. Signal Image Video Process. 10(4), 609–616 (2016)

    Article  Google Scholar 

  6. Li, M., Zhang, H., Zhang, C.: No-reference quality assessment for JPEG2000 compressed images. In: Proceedings of IEEE International Conference on Image Processing, vol. 5, pp. 3539–3542, Singapore (2004)

  7. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  8. Saad, M.A., Bovik, A.C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)

    Article  MathSciNet  Google Scholar 

  9. Liu, L., Dong, H., Huang, H., Bovik, A.C.: No-reference image quality assessment in curvelet domain. Signal Process. Image Commun. 24(4), 494–505 (2014)

    Article  Google Scholar 

  10. Li, Y., Po, L.-M., Xu, X., Feng, L.: No-reference image quality assessment using statistical characterization in the shearlet domain. Signal Process. Image Commun. 29(7), 748–759 (2014)

  11. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kutyniok, G., Lim, W.-Q., Zhuang, X.: Digital shearlet transforms. In: Shearlets, Birkhuser, Boston, pp. 239–282, (2012), ISBN: 978-0-8176-8315-3. doi:10.1007/978-0-8176-8316-0-7

  13. Smola, A.J., Schlkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  14. Lim, W.-Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)

    Article  MathSciNet  Google Scholar 

  15. Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE image quality assessment database release 2. (http://live.ece.utexas.edu/research/quality)

  16. Sheikh, H.R., Bovik, A.C., de Veciana, G.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  17. Sharifi, K., Leon-Garcia, A.: Estimation of shape parameter for generalized gaussian distributions in subband decompositions of video. IEEE Trans. Circuits Syst. Video Technol. 5(1), 52–56 (1995)

    Article  Google Scholar 

  18. Verdoolaege, G., Scheunders, P.: Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination. Int. J. Comput. Vis. 95(3), 265–286 (2011)

    Article  MATH  Google Scholar 

  19. Maboudi, H., Shimazaki, H., Amari, S., Soltanian-Zadeh, H.: Representation of higher-order statistical structures in natural scenes via spatial phase distributions. Vis. Res. 120, 61–73 (2015)

    Article  Google Scholar 

  20. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (1996). ISBN-10: 0521568900

    Google Scholar 

  21. Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10(10), 30–45 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manbae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudpour, S., Kim, M. No-reference image quality assessment in complex-shearlet domain. SIViP 10, 1465–1472 (2016). https://doi.org/10.1007/s11760-016-0957-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0957-7

Keywords

Navigation