[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Esoteric Rough Set Theory: Algebraic Semantics of a Generalized VPRS and VPFRS

  • Chapter
Transactions on Rough Sets VIII

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 5084))

Abstract

In different theories involving indiscernibility, it is assumed that at some level the objects involved are actually assignable distinct names. This can prove difficult in different application contexts if the main semantic level is distinct from the semantic-naming level. Set-theoretically too this aspect is of much significance. In the present research paper we develop a framework for a generalized form of rough set theory involving partial equivalences on different types of approximation spaces. The theory is also used to develop an algebraic semantics for variable precision rough set and variable precision fuzzy rough set theory. A quasi-inductive concept of relativised rough approximation is also introduced in the last section. Its relation to esoteric rough sets is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets – a tutorial. In: Pal, S.K. (ed.) Rough Fuzzy Hybridization, pp. 3–98. Springer, Heidelberg (1999)

    Google Scholar 

  2. Cattaneo, G., Ciucci, D.: Algebras for rough sets and fuzzy logics. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets 2. LNCS, vol. 3100, pp. 208–252. Springer, Heidelberg (2004)

    Google Scholar 

  3. Inuiguchi, M.: Generalisation of rough sets and rule extraction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 96–116. Springer, Heidelberg (2004)

    Google Scholar 

  4. Mani, A.: Rough equalities from posets and rough difference orders. Fundamenta Informaticae 53, 321–333 (2002)

    MathSciNet  Google Scholar 

  5. Mani, A.: Relativised generalized rough sets and bayesian belief networks (to be Submitted, 2007)

    Google Scholar 

  6. Lin, T.Y., Yao, Y.Y., Wong, S.K.: A review of rough set models. In: Lin, Y.Y., et al. (eds.) Analysis of Information databases,Rough Sets and Data Mining, Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  7. Ziarko, W.: Variable precision rough set model. J. of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rolka, A.M., Rolka, L.: Variable precision fuzzy rough sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 144–160. Springer, Heidelberg (2004)

    Google Scholar 

  9. Banerjee, M., Chakraborty, M.K.: Algebras from rough sets – an overview. In: Pal, S.K., et al. (eds.) Rough-Neural Computing, pp. 157–184. Springer, Heidelberg (2004)

    Google Scholar 

  10. Yao, G.T.: Constructions and algebraic methods of the theory of rough sets. Information Science 109, 21–47 (1998)

    Article  MATH  Google Scholar 

  11. Düntsch, I.: Rough sets and algebras of relations. In: Orlowska, E. (ed.) Incomplete Information and Rough Set Analysis, pp. 109–119. Physica, Heidelberg (1998)

    Google Scholar 

  12. Katrinak, T.: Construction of regular double p-algebras. Bull. Roy. Soc. Sci. Liege 43, 294–301 (1974)

    MathSciNet  Google Scholar 

  13. Burmeister, P.: A Model-Theoretic Oriented approach to Partial Algebras. Akademie-Verlag (1986) (2002)

    Google Scholar 

  14. Vojvodic, G.: A note on weak partial congruence algebras. Rev. of Res. Fac. Sci. Univ of Novisad 22, 89–94 (1992)

    MATH  MathSciNet  Google Scholar 

  15. Seselja, B., Vojvodic, G.: On the lattice of weak congruence relations. Algebra Universalis 25, 121–130 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mani, A.: Esoteric rough algebras, p. 24 (submitted, 2006)

    Google Scholar 

  17. Mani, A.: Super rough semantics. Fundamenta Informaticae 65, 249–261 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Ljapin, E.S.: Partial algebras and their applications. Academic, Kluwer (1996)

    Google Scholar 

  19. Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundamenta Informaticae 28, 211–221 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Bleyberg, M., Elumalai, A.: Using rough sets to construct sense type decision trees for text categorisation. Transactions of IEEE, 19–24 (2001)

    Google Scholar 

  21. Katzberg, T., Ziarko, W.: Variable precision extension of rough sets. Fundamenta Informaticae 27, 1–12 (1996)

    MathSciNet  Google Scholar 

  22. Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R., et al. (eds.) Advances in Dempster-Schafer Theory of Evidence, Wiley, Chichester (1994)

    Google Scholar 

  23. Kryszkiewicz, M., Cichon, K.: Towards scalable algorithms for discovering rough set reducts. In: Peters, J.F., Skowron, A. (eds.) Transactions of Rough Sets-1, vol. LNCS-3100, pp. 120–143. Springer, Heidelberg (2004)

    Google Scholar 

  24. Bazan, J., Nguyen, S., Nguyen, H., Synak, P., Wroblewski, J.: Rough set algorithms in classification problem. In: Polkowski, L., et al. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica Verlag, Heidelberg (2000)

    Google Scholar 

  25. Bazan, J., Nguyen, S.H., Skowron, A., Szczuka, M.: A view on rough set concept approximations. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James F. Peters Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mani, A. (2008). Esoteric Rough Set Theory: Algebraic Semantics of a Generalized VPRS and VPFRS. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets VIII. Lecture Notes in Computer Science, vol 5084. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85064-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85064-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85063-2

  • Online ISBN: 978-3-540-85064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics