[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A View on Rough Set Concept Approximations

  • Conference paper
  • First Online:
Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2639))

Abstract

The concept of approximation is one of the most fundamental in rough set theory. In this work we examine this basic notion as well as its extensions and modifications. The goal is to construct a parameterised approximation mechanism making it possible to develop multi-stage multi-level concept hierarchies that are capable of maintaining acceptable level of imprecision from input to output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan J., A comparison of dynamic non-dynamic rough set methods for extracting laws from decision tables. In: [7], pp. 321–365.

    Google Scholar 

  2. Grzymała-Busse J., A new version of the rule induction system LERS. Fundamenta Informaticae, Vol. 31(1), 1997, pp. 27–39.

    MATH  Google Scholar 

  3. Ohrn A., Komorowski J., Skowron A., Synak P., The ROSETTA Software System. In [7] pp. 572–576.

    Google Scholar 

  4. Nguyen H.S., Skowron A., Szczuka M., Situation Identification by Unmanned Aerial Vehicle. Proceedings of CS&P 2000, Informatik Berichte, Humboldt-Univerität zu Berlin, Berlin, 2000, pp. 177–188.

    Google Scholar 

  5. Pawlak Z., Rough sets: Theoretical aspects of reasoning about data, Kluwer, Dordrecht, 1991.

    MATH  Google Scholar 

  6. Pawlak Z., Skowron A., Rough membership functions. In Yager R., Fedrizzi M., Kacprzyk J. (eds)., Advances in the Dempster-Shafer Theory of Evidence, Wiley, New York, 1994, pp. 251–271.

    Google Scholar 

  7. Polkowski L., Skowron A. (eds.), Rough Sets in Knowledge Discovery vol. 1–2, Physica-Verlag, Heidelberg, 1998.

    Google Scholar 

  8. Polkowski L., Skowron A., Rough mereology: A new paradigm for approximate reasoning. Int. Journal of Approximate Reasoning vol. 15(4), 1996, pp. 333–365.

    Article  MATH  MathSciNet  Google Scholar 

  9. Polkowski L., Skowron A., Towards an adaptive calculus of granules. In Zadeh L. A., Kacprzyk J.(eds.), Computing with Words in Information/Intelligent Systems vol. 1, Physica-Verlag, Heidelberg, 1999, pp. 201–228.

    Google Scholar 

  10. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In Słowiński R. (ed.). Intelligent Decision Support — Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, 1992, pp. 311–362.

    Google Scholar 

  11. Skowron A., Szczuka M., Approximate reasoning schemes: Classifiers for computing with words. In Proceedings of SMPS 2002, Advances in Soft Computing series, Physica-Verlag, Heidelberg, 2002, pp. 338–345.

    Google Scholar 

  12. Stefanowski J., On rough set based approaches to induction of decision rules. In [7] pp. 500–529.

    Google Scholar 

  13. Ziarko, W., Rough set as a methodology in Data Mining. In [7] pp. 554–576.

    Google Scholar 

  14. The RoboCup Homepage-http://www.robocup.org

  15. The RSES Homepage-http://www.logic.mimuw.edu.pl/~rses

  16. Vitoria A., Małuszyński: A logic programming framework for rough sets. LNAI Vol. 2475, Springer-Verlag, Heidelberg, 2002, pp. 205–212.

    Google Scholar 

  17. The WITAS Project Homepage-http://www.ida.liu.se/ext/witas/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, J., Son, N.H., Skowron, A., Szczuka, M. (2003). A View on Rough Set Concept Approximations. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-39205-X_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-14040-5

  • Online ISBN: 978-3-540-39205-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics