Abstract
The concept of approximation is one of the most fundamental in rough set theory. In this work we examine this basic notion as well as its extensions and modifications. The goal is to construct a parameterised approximation mechanism making it possible to develop multi-stage multi-level concept hierarchies that are capable of maintaining acceptable level of imprecision from input to output.
Preview
Unable to display preview. Download preview PDF.
References
Bazan J., A comparison of dynamic non-dynamic rough set methods for extracting laws from decision tables. In: [7], pp. 321–365.
Grzymała-Busse J., A new version of the rule induction system LERS. Fundamenta Informaticae, Vol. 31(1), 1997, pp. 27–39.
Ohrn A., Komorowski J., Skowron A., Synak P., The ROSETTA Software System. In [7] pp. 572–576.
Nguyen H.S., Skowron A., Szczuka M., Situation Identification by Unmanned Aerial Vehicle. Proceedings of CS&P 2000, Informatik Berichte, Humboldt-Univerität zu Berlin, Berlin, 2000, pp. 177–188.
Pawlak Z., Rough sets: Theoretical aspects of reasoning about data, Kluwer, Dordrecht, 1991.
Pawlak Z., Skowron A., Rough membership functions. In Yager R., Fedrizzi M., Kacprzyk J. (eds)., Advances in the Dempster-Shafer Theory of Evidence, Wiley, New York, 1994, pp. 251–271.
Polkowski L., Skowron A. (eds.), Rough Sets in Knowledge Discovery vol. 1–2, Physica-Verlag, Heidelberg, 1998.
Polkowski L., Skowron A., Rough mereology: A new paradigm for approximate reasoning. Int. Journal of Approximate Reasoning vol. 15(4), 1996, pp. 333–365.
Polkowski L., Skowron A., Towards an adaptive calculus of granules. In Zadeh L. A., Kacprzyk J.(eds.), Computing with Words in Information/Intelligent Systems vol. 1, Physica-Verlag, Heidelberg, 1999, pp. 201–228.
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In Słowiński R. (ed.). Intelligent Decision Support — Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, 1992, pp. 311–362.
Skowron A., Szczuka M., Approximate reasoning schemes: Classifiers for computing with words. In Proceedings of SMPS 2002, Advances in Soft Computing series, Physica-Verlag, Heidelberg, 2002, pp. 338–345.
Stefanowski J., On rough set based approaches to induction of decision rules. In [7] pp. 500–529.
Ziarko, W., Rough set as a methodology in Data Mining. In [7] pp. 554–576.
The RoboCup Homepage-http://www.robocup.org
The RSES Homepage-http://www.logic.mimuw.edu.pl/~rses
Vitoria A., Małuszyński: A logic programming framework for rough sets. LNAI Vol. 2475, Springer-Verlag, Heidelberg, 2002, pp. 205–212.
The WITAS Project Homepage-http://www.ida.liu.se/ext/witas/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J., Son, N.H., Skowron, A., Szczuka, M. (2003). A View on Rough Set Concept Approximations. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2003. Lecture Notes in Computer Science(), vol 2639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39205-X_23
Download citation
DOI: https://doi.org/10.1007/3-540-39205-X_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-14040-5
Online ISBN: 978-3-540-39205-7
eBook Packages: Springer Book Archive