Abstract
We present an Immune Inspired Algorithm, based on CLONALG, for software test data evolution. Generated tests are evaluated using the mutation testing adequacy criteria, and used to direct the search for new tests. The effectiveness of this algorithm is compared against an elitist Genetic Algorithm, with effectiveness measured by the number of mutant executions needed to achieve a specific mutation score. Results indicate that the Immune Inspired Approach is consistently more effective than the Genetic Algorithm, generating higher mutation scoring test sets in less computational expense.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beizer, B.: Software Testing Techniques, 2nd edn. VN Reinhold, New York (1990)
Wong, W.E.: On Mutation and Data Flow. PhD thesis, Purdue University (1993)
May, P., Mander, K., Timmis, J.: Software vaccination: An artificial immune system approach. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 81–92. Springer, Heidelberg (2003)
May, P.: Test Data Generation: Two Evolutionary Approaches to Mutation Testing. PhD thesis, The University of Kent at Canterbury (2007)
Offutt, A.J., Untch, R.H.: Uniting the Orthogonal. Kluwer, Dordrecht (2000)
Baudry, B., Fleurey, F., Jezequel, J.-M., Traon, Y.L.: Genes and bacteria for automatic test cases optimization in the.net environment. In: ISSRE 2002. Proc. of Int. Symp. on Software Reliability Engineering, pp. 195–206 (2002)
Mitchell, M.: An Introduction to Genetic Algorithms, 6th edn. MIT Press, Cambridge (1999)
de Castro, L.N., Zuben, F.J.V.: The clonal selection algorithm with engineering applications. In: Proc. GECCO, pp. 36–37 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
May, P., Timmis, J., Mander, K. (2007). Immune and Evolutionary Approaches to Software Mutation Testing. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds) Artificial Immune Systems. ICARIS 2007. Lecture Notes in Computer Science, vol 4628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73922-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-73922-7_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73921-0
Online ISBN: 978-3-540-73922-7
eBook Packages: Computer ScienceComputer Science (R0)