[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Immune and Evolutionary Approaches to Software Mutation Testing

  • Conference paper
Artificial Immune Systems (ICARIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4628))

Included in the following conference series:

Abstract

We present an Immune Inspired Algorithm, based on CLONALG, for software test data evolution. Generated tests are evaluated using the mutation testing adequacy criteria, and used to direct the search for new tests. The effectiveness of this algorithm is compared against an elitist Genetic Algorithm, with effectiveness measured by the number of mutant executions needed to achieve a specific mutation score. Results indicate that the Immune Inspired Approach is consistently more effective than the Genetic Algorithm, generating higher mutation scoring test sets in less computational expense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beizer, B.: Software Testing Techniques, 2nd edn. VN Reinhold, New York (1990)

    Google Scholar 

  2. Wong, W.E.: On Mutation and Data Flow. PhD thesis, Purdue University (1993)

    Google Scholar 

  3. May, P., Mander, K., Timmis, J.: Software vaccination: An artificial immune system approach. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 81–92. Springer, Heidelberg (2003)

    Google Scholar 

  4. May, P.: Test Data Generation: Two Evolutionary Approaches to Mutation Testing. PhD thesis, The University of Kent at Canterbury (2007)

    Google Scholar 

  5. Offutt, A.J., Untch, R.H.: Uniting the Orthogonal. Kluwer, Dordrecht (2000)

    Google Scholar 

  6. Baudry, B., Fleurey, F., Jezequel, J.-M., Traon, Y.L.: Genes and bacteria for automatic test cases optimization in the.net environment. In: ISSRE 2002. Proc. of Int. Symp. on Software Reliability Engineering, pp. 195–206 (2002)

    Google Scholar 

  7. Mitchell, M.: An Introduction to Genetic Algorithms, 6th edn. MIT Press, Cambridge (1999)

    Google Scholar 

  8. de Castro, L.N., Zuben, F.J.V.: The clonal selection algorithm with engineering applications. In: Proc. GECCO, pp. 36–37 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leandro Nunes de Castro Fernando José Von Zuben Helder Knidel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

May, P., Timmis, J., Mander, K. (2007). Immune and Evolutionary Approaches to Software Mutation Testing. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds) Artificial Immune Systems. ICARIS 2007. Lecture Notes in Computer Science, vol 4628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73922-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73922-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73921-0

  • Online ISBN: 978-3-540-73922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics