
Immune and Evolutionary Approaches to

Software Mutation Testing

Pete May1, Jon Timmis2, and Keith Mander1

1 Computing Laboratory, University of Kent, Canterbury, Kent, UK
petesmay@gmail.com, k.c.mander@kent.ac.uk

2 Departments of Computer Science and Electronics, University of York, York, UK
jtimmis@cs.york.ac.uk

Abstract. We present an Immune Inspired Algorithm, based on
CLONALG, for software test data evolution. Generated tests are
evaluated using the mutation testing adequacy criteria, and used to direct
the search for new tests. The effectiveness of this algorithm is compared
against an elitist Genetic Algorithm, with effectiveness measured by the
number of mutant executions needed to achieve a specific mutation score.
Results indicate that the Immune Inspired Approach is consistently more
effective than the Genetic Algorithm, generating higher mutation scoring
test sets in less computational expense.

1 Introduction

Software testing can be considered to have two aims [1]. The primary aim is
to prevent bugs from being introduced into code - prevention being the best
medicine. The second is to discover those un-prevented bugs, i.e. to indicate
their symptoms and allow the infection to be cured.

Curing an infection is a two stage process of identifying and then correcting
faults. These continue until all bugs in the code have been found, at which
point a set of tests will have been generated that have reduced the failure
rate of the program. Unfortunately, a tester does not know a priori whether
faults are present in the software, posing an interesting dilemma: how does a
tester distinguish between a “poor” test that is incapable of displaying a fault’s
symptoms, and a “good” test when there are simply no faults to find? Neither
situation provides a useful metric. A heuristic to help aid this problem uses the
notion of test set adequacy as a means of measuring how “good” a test set is at
testing a program [2]. The key to this is that “goodness” is measured in relation
to a predefined adequacy criteria, which is usually some indication of program
coverage. For example, statement coverage requires that a test set executes every
statement in a program at least once. If a test set is found inadequate relative to
the criteria (e.g. not all statements are executed at least once), then further tests
are required. The aim therefore, is to generate a set of tests that fully exercise
the adequacy criteria.

Typical adequacy criteria such as statement coverage and decision testing
(exercising all true and false paths through a program) rely on exercising a

L.N. de Castro, F.J. Von Zuben, and H. Knidel (Eds.): ICARIS 2007, LNCS 4628, pp. 336–347, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Immune and Evolutionary Approaches to Software Mutation Testing 337

program with an increasing number of tests in order to improve the reliability of
that program. They do not, however, focus on the cause of a program’s failure,
namely the faults. One criteria does. Known as mutation testing, this criteria
generates versions of the program containing simple faults and then finds tests
to indicate their symptoms. If an adequate test set can be found that reveals the
symptoms in all the faulty program versions, then confidence that the program
is correct increases. This criterion forms an adequacy measure for the cure.

In previous work, we outlined a vision for a software mutation system that
exploits Immune-Inspired principles [3]. In this paper we present a limited set of
our results from our investigations, detailed further in [4]. The remainder of this
paper is organised as follows: Section 2 describes the mutation testing process.
Next, in section 3, the notion of algorithm effectiveness with respect to evolving
test data using mutation testing is introduced. Section 4 details the Immune and
Genetic algorithms, which are compared in section 5.

2 Mutation Testing

Mutation testing is an iterative procedure to improve test data with respect to
a program, as indicated in Figure 1. The initial parameters to the process are
the PUT (Program Under Test), a set of mutation operators (Mutagens), and
a test set population, T. Initially, by using an oracle, the PUT must be shown
to produce the desired outputs when executed with the test set T. If not, then
T has already demonstrated that the PUT contains a fault, which should be
corrected before resuming the process.

Mutagens

Input test
prog, P

FalseTrue
Quit

TrueFalse

Prog

Tests

Create
mutants

Input test
cases, T

Run T on P

Fix P

All
mutants
dead?

Analyse and
mark

equivalent
mutants

correct?
P(T)

Update T

Run test cases
on each live

mutant

Fig. 1. The Mutation Testing process. Diagram reproduced from [4], modified from [5].

The next stage is to generate a set, M, of fault induced variants of the
PUT that correct for simple faults that could have occurred. Each variant, or
mutant, differs from the PUT by a small amount, such as a single lexeme, and
is generated by a mutagen. These mutation operators alter the semantics of the
PUT depending on the faults they classify. For example, the relational operator
mutagen will generate a number of mutants where each one has an instance of


