[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Anonymizing Tables

  • Conference paper
Database Theory - ICDT 2005 (ICDT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3363))

Included in the following conference series:

Abstract

We consider the problem of releasing tables from a relational database containing personal records, while ensuring individual privacy and maintaining data integrity to the extent possible. One of the techniques proposed in the literature is k-anonymization. A release is considered k-anonymous if the information for each person contained in the release cannot be distinguished from at least k–1 other persons whose information also appears in the release. In the k- Anonymity problem the objective is to minimally suppress cells in the table so as to ensure that the released version is k-anonymous. We show that the k-Anonymity problem is NP-hard even when the attribute values are ternary. On the positive side, we provide an O(k)-approximation algorithm for the problem. This improves upon the previous best-known O(klog k)-approximation. We also give improved positive results for the interesting cases with specific values of k — in particular, we give a 1.5-approximation algorithm for the special case of 2-Anonymity, and a 2-approximation algorithm for 3-Anonymity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, D., Aggarwal, C.: On the design and quantification of privacy preserving datamining algorithms. In: Proc. of the ACM Symp. on Principles of Database Systems (2001)

    Google Scholar 

  2. Aggarwal, G., Mishra, N., Pinkas, B.: Privacy preserving computation of the k-th ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 439–450 (May 2000)

    Google Scholar 

  4. Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving aggregates. Technical report, Stanford University (2003)

    Google Scholar 

  5. Cornuejols, G.P.: General factors of graphs. Journal of Combinatorial Theory B 45, 185–198 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proc. of the ACM Symp. on Principles of Database Systems, pp. 202–210 (2003)

    Google Scholar 

  7. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)

    Google Scholar 

  8. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: Proc. of the ACM Symp. on Principles of Database Systems (June 2003)

    Google Scholar 

  9. European Union. Directive on Privacy Protection (October 1998)

    Google Scholar 

  10. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Kann, V.: Maximum bounded H-matching is MAX SNP-complete. Information Processing Letters 49, 309–318 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proc. of the ACM Symp. on Principles of Database Systems (June 2004)

    Google Scholar 

  14. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proc. of the ACM Symp. on Principles of Database Systems, pp. 188 (1998)

    Google Scholar 

  15. Sweeney, L.: Uniqueness of simple demographics in the U.S. population. In: LIDAP-WP4. Carnegie Mellon University, Laboratory for International Data Privacy, Pittsburgh, PA (2000)

    Google Scholar 

  16. Sweeney, L.: k-Anonymity: A model for protecting privacy. International Journal on Uncertainty Fuzziness Knowledge-based Systems (June 2002)

    Google Scholar 

  17. Time. The Death of Privacy (August 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aggarwal, G. et al. (2004). Anonymizing Tables. In: Eiter, T., Libkin, L. (eds) Database Theory - ICDT 2005. ICDT 2005. Lecture Notes in Computer Science, vol 3363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30570-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30570-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24288-8

  • Online ISBN: 978-3-540-30570-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics