Abstract
We consider the problem of releasing tables from a relational database containing personal records, while ensuring individual privacy and maintaining data integrity to the extent possible. One of the techniques proposed in the literature is k-anonymization. A release is considered k-anonymous if the information for each person contained in the release cannot be distinguished from at least k–1 other persons whose information also appears in the release. In the k- Anonymity problem the objective is to minimally suppress cells in the table so as to ensure that the released version is k-anonymous. We show that the k-Anonymity problem is NP-hard even when the attribute values are ternary. On the positive side, we provide an O(k)-approximation algorithm for the problem. This improves upon the previous best-known O(klog k)-approximation. We also give improved positive results for the interesting cases with specific values of k — in particular, we give a 1.5-approximation algorithm for the special case of 2-Anonymity, and a 2-approximation algorithm for 3-Anonymity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, D., Aggarwal, C.: On the design and quantification of privacy preserving datamining algorithms. In: Proc. of the ACM Symp. on Principles of Database Systems (2001)
Aggarwal, G., Mishra, N., Pinkas, B.: Privacy preserving computation of the k-th ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)
Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, pp. 439–450 (May 2000)
Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving aggregates. Technical report, Stanford University (2003)
Cornuejols, G.P.: General factors of graphs. Journal of Combinatorial Theory B 45, 185–198 (1988)
Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proc. of the ACM Symp. on Principles of Database Systems, pp. 202–210 (2003)
Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)
Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: Proc. of the ACM Symp. on Principles of Database Systems (June 2003)
European Union. Directive on Privacy Protection (October 1998)
Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)
Kann, V.: Maximum bounded H-matching is MAX SNP-complete. Information Processing Letters 49, 309–318 (1994)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)
Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proc. of the ACM Symp. on Principles of Database Systems (June 2004)
Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proc. of the ACM Symp. on Principles of Database Systems, pp. 188 (1998)
Sweeney, L.: Uniqueness of simple demographics in the U.S. population. In: LIDAP-WP4. Carnegie Mellon University, Laboratory for International Data Privacy, Pittsburgh, PA (2000)
Sweeney, L.: k-Anonymity: A model for protecting privacy. International Journal on Uncertainty Fuzziness Knowledge-based Systems (June 2002)
Time. The Death of Privacy (August 1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aggarwal, G. et al. (2004). Anonymizing Tables. In: Eiter, T., Libkin, L. (eds) Database Theory - ICDT 2005. ICDT 2005. Lecture Notes in Computer Science, vol 3363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30570-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-30570-5_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24288-8
Online ISBN: 978-3-540-30570-5
eBook Packages: Computer ScienceComputer Science (R0)