[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Hardness of (ε, m)-anonymity

  • Conference paper
Web-Age Information Management (WAIM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7923))

Included in the following conference series:

  • 3519 Accesses

Abstract

When a table containing individual data is published, disclosure of sensitive information should be prohibitive. (ε, m)-anonymity was a new anonymization principle for preservation of proximity privacy, in publishing numerical sensitive data. It is shown to be NP-Hard to (ε, m)-anonymize a table minimizing the number of suppressed cells. Extensive performance study verified our findings that our algorithm is significantly better than the traditional algorithms presented in the paper[1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, J., Tao, Y., Xiao, X.: Preservation of Proximity Privacy in Publishing Numerical Sensitive Data. In: ACM SIGMOD 2008, Vancouver, BC, Canada (2008)

    Google Scholar 

  2. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowlege-Based Systems 10(5), 557–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: Proceedings of the 17th ACM Symposium on the Principle of Database Systems, Seattle, WA (June 1998)

    Google Scholar 

  4. Samarati, P.: Protecting respondents identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)

    Article  Google Scholar 

  5. Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: Proc. of International Conference on Data Engineering (ICDE), pp. 217–228 (2005)

    Google Scholar 

  6. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.-C.: Utility-based anonymization using local recoding. In: SIGKDD, pp. 785–790 (2006)

    Google Scholar 

  7. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and privacy preservation. In: ICDE, pp. 205–216 (2005)

    Google Scholar 

  8. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity. In: Proc. of ACM Management of Data (SIGMOD), pp. 49–60 (2005)

    Google Scholar 

  9. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proc. of International Conference on Data Engineering (ICDE), pp. 277–286 (2006)

    Google Scholar 

  10. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. In: ICDE, pp. 1–24 (2006)

    Google Scholar 

  11. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE, pp. 106–115 (2007)

    Google Scholar 

  12. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS, pp. 223–228 (2004)

    Google Scholar 

  13. Xiao, X.K., Ke, Y., Tao, Y.F.: The Hardness and Approximation Algorithms for L-Diversity. In: EDBT 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Li, D., He, X., Wang, W., Chen, H. (2013). The Hardness of (ε, m)-anonymity. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds) Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38562-9_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38562-9_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38561-2

  • Online ISBN: 978-3-642-38562-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics