Abstract
We have proposed a fuzzy rough set approach without using any fuzzy logical connectives to extract gradual decision rules from decision tables. In this paper, we discuss the use of these gradual decision rules within modus ponens and modus tollens inference patterns. We discuss the difference and similarity between modus ponens and modus tollens and, moreover, we generalize them to formalize approximate reasoning based on the extracted gradual decision rules. We demonstrate that approximate reasoning can be performed by manipulation of modifier functions associated with the gradual decision rules.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cattaneo, G.: Fuzzy Extension of Rough Sets Theory. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 275–282. Springer, Heidelberg (1998)
Dubois, D., Prade, H.: Gradual Inference Rules in Approximate Reasoning. Information Sciences 61, 103–122 (1992)
Dubois, D., Prade, H.: Putting Rough Sets and Fuzzy Sets Together. In: Słowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of the Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)
Greco, S., Inuiguchi, M., Słowiński, R.: Rough Sets and Gradual Decision Rules. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 156–164. Springer, Heidelberg (2003)
Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy Rough Sets and Multiple Premise Gradual Decision Rules. In: Di Gesú, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS (LNAI), vol. 2955, pp. 148–163. Springer, Heidelberg (2006)
Greco, S., Matarazzo, B., Słowiński, R.: The Use of Rough Sets and Fuzzy Sets in MCDM. In: Gal, T., Stewart, T., Hanne, T. (eds.) Advances in Multiple Criteria Decision Making, pp. 1451–1459. Kluwer Academic Publishers, Boston (1999)
Greco, S., Matarazzo, B., Słowiński, R.: Rough Set Processing of Vague Information Using Fuzzy Similarity Relations. In: Calude, C.S., Paun, G. (eds.) Finite Versus Infinite – Contributions to an Eternal Dilemma, pp. 149–173. Springer, London (2000)
Inuiguchi, M., Greco, S., Słowiński, R., Tanino, T.: Possibility and Necessity Measure Specification Using Modifiers for Decision Making under Fuzziness. Fuzzy Sets and Systems 137, 151–175 (2003)
Inuiguchi, M., Tanino, T.: New Fuzzy Rough Sets Based on Certainty Qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 278–296. Springer, Berlin (2003)
Nakamura, A., Gao, J.M.: A Logic for Fuzzy Data Analysis. Fuzzy Sets and Systems 39, 127–132 (1991)
Pawlak, Z.: Rough Sets. Kluwer, Dordrecht (1991)
Pawlak, Z.: Reasoning about Data - A Rough Set Perspective. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 25–34. Springer, Heidelberg (1998)
Polkowski, L.: Rough Sets: Mathematical Foundations. Physica-Verlag, Heidelberg (2002)
Polkowski, L., Skowron, A.: Rough Mereology: A New Paradigm for Approximate Reasoning. Int. Journal of Approximate Reasoning 15(4), 333–365 (1996)
Skowron, A., Stepaniuk, J.: Information Granules and Rough-Neural Computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 43–84. Springer, Berlin (2003)
Słowiński, R.: Rough Set Processing of Fuzzy Information. In: Lin, T.Y., Wildberger, A. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, Simulation Councils, Inc., San Diego, CA, pp. 142–145 (1995)
Słowiński, R., Stefanowski, J.: Rough Set Reasoning about Uncertain Data. Fundamenta Informaticae 27, 229–243 (1996)
Yao, Y.Y.: Combination of Rough and Fuzzy Sets Based on α-level Sets. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis for Imprecise Data, pp. 301–321. Kluwer, Boston (1997)
Zadeh, L.A.: Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Systems Man Cybernet. 3, 28–44 (1973)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Inuiguchi, M., Greco, S., Słowiński, R. (2004). Fuzzy-Rough Modus Ponens and Modus Tollens as a Basis for Approximate Reasoning. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-25929-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22117-3
Online ISBN: 978-3-540-25929-9
eBook Packages: Springer Book Archive