Abstract
The paper proposed a new fuzzy-neural recurrent multi-model for systems identification and states estimation of complex nonlinear mechanical plants with friction. The parameters and states of the local recurrent neural network models are used for a local direct and indirect adaptive trajectory tracking control systems design. The designed local control laws are coordinated by a fuzzy rule based control system. The applicability of the proposed intelligent control system is confirmed by simulation and comparative experimental results, where a good convergent results, are obtained.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Narendra, K.S., Parthasarathy, K.: Identification and Control of Dynamic Systems using Neural Networks. IEEE Transactions on NNs 1, 4–27 (1990)
Sastry, P.S., Santharam, G., Unnikrishnan, K.P.: Memory Networks for Identification and Control of Dynamical Systems. IEEE Transactions on NNs 5, 306–320 (1994)
Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural Network for Control Systems-A Survey. Automatica 28, 1083–1112 (1992)
Baruch, I., Flores, J.M., Nava, F., Ramirez, I.R., Nenkova, B.: An Adavanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. of the First Int. IEEE Symposium on Intelligent Systems, Varna, Bulgaria, September 2002, pp. 289–295 (2002)
Baruch, I., Gortcheva, E.: Fuzzy Neural Model for Nonlinear Systems Identification. In: Proc. of the IFAC Worshop on Algorithms and Architectures for Real-Time Control, AARTC 1998, Cancun, Mexico, April 15-17, pp. 283–288 (1998)
Baruch, I., Garrido, R., Mitev, A., Nenkova, B.: A Neural Network Approach for Stick-Slip Model Identification. In: Proc. of the 5-th Int. Conf. on Engineering Applications of Neural Networks, EANN 1999, Warsaw, Poland, September 13-15, pp. 183–188 (1999)
Baruch, I., Flores, J.M., Martinez, J.C., Nenkova, B.: Fuzzy-Neural Models for Real-Time Identification and control of a Mechanical System. In: Cerri, S.A., Dochev, D. (eds.) AIMSA 2000. LNCS (LNAI), vol. 1904, pp. 292–300. Springer, Heidelberg (2000)
Mastorocostas, P.A., Theocharis, J.B.: A Recurrent Fuzzy-Neural Model for Dynamic System Identification. IEEE Trans. on SMC – Part B: Cybernetics 32, 176–190 (2002)
Lee, S.W., Kim, J.H.: Robust adaptive stick-slip friction compensation. IEEE Trans. on Ind. Electr. 42, 474–479 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baruch, I.S., Beltran L, R., Olivares, JL., Garrido, R. (2004). A Fuzzy-Neural Multi-model for Mechanical Systems Identification and Control. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds) MICAI 2004: Advances in Artificial Intelligence. MICAI 2004. Lecture Notes in Computer Science(), vol 2972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24694-7_80
Download citation
DOI: https://doi.org/10.1007/978-3-540-24694-7_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21459-5
Online ISBN: 978-3-540-24694-7
eBook Packages: Springer Book Archive