[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Fuzzy-Neural Multi-model for Mechanical Systems Identification and Control

  • Conference paper
MICAI 2004: Advances in Artificial Intelligence (MICAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2972))

Included in the following conference series:

Abstract

The paper proposed a new fuzzy-neural recurrent multi-model for systems identification and states estimation of complex nonlinear mechanical plants with friction. The parameters and states of the local recurrent neural network models are used for a local direct and indirect adaptive trajectory tracking control systems design. The designed local control laws are coordinated by a fuzzy rule based control system. The applicability of the proposed intelligent control system is confirmed by simulation and comparative experimental results, where a good convergent results, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Narendra, K.S., Parthasarathy, K.: Identification and Control of Dynamic Systems using Neural Networks. IEEE Transactions on NNs 1, 4–27 (1990)

    Google Scholar 

  2. Sastry, P.S., Santharam, G., Unnikrishnan, K.P.: Memory Networks for Identification and Control of Dynamical Systems. IEEE Transactions on NNs 5, 306–320 (1994)

    Google Scholar 

  3. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural Network for Control Systems-A Survey. Automatica 28, 1083–1112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baruch, I., Flores, J.M., Nava, F., Ramirez, I.R., Nenkova, B.: An Adavanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. of the First Int. IEEE Symposium on Intelligent Systems, Varna, Bulgaria, September 2002, pp. 289–295 (2002)

    Google Scholar 

  5. Baruch, I., Gortcheva, E.: Fuzzy Neural Model for Nonlinear Systems Identification. In: Proc. of the IFAC Worshop on Algorithms and Architectures for Real-Time Control, AARTC 1998, Cancun, Mexico, April 15-17, pp. 283–288 (1998)

    Google Scholar 

  6. Baruch, I., Garrido, R., Mitev, A., Nenkova, B.: A Neural Network Approach for Stick-Slip Model Identification. In: Proc. of the 5-th Int. Conf. on Engineering Applications of Neural Networks, EANN 1999, Warsaw, Poland, September 13-15, pp. 183–188 (1999)

    Google Scholar 

  7. Baruch, I., Flores, J.M., Martinez, J.C., Nenkova, B.: Fuzzy-Neural Models for Real-Time Identification and control of a Mechanical System. In: Cerri, S.A., Dochev, D. (eds.) AIMSA 2000. LNCS (LNAI), vol. 1904, pp. 292–300. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Mastorocostas, P.A., Theocharis, J.B.: A Recurrent Fuzzy-Neural Model for Dynamic System Identification. IEEE Trans. on SMC – Part B: Cybernetics 32, 176–190 (2002)

    Article  Google Scholar 

  9. Lee, S.W., Kim, J.H.: Robust adaptive stick-slip friction compensation. IEEE Trans. on Ind. Electr. 42, 474–479 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baruch, I.S., Beltran L, R., Olivares, JL., Garrido, R. (2004). A Fuzzy-Neural Multi-model for Mechanical Systems Identification and Control. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds) MICAI 2004: Advances in Artificial Intelligence. MICAI 2004. Lecture Notes in Computer Science(), vol 2972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24694-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24694-7_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21459-5

  • Online ISBN: 978-3-540-24694-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics