[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Nonlinear Systems Identification and Control Using Uncertain Rule-based Fuzzy Neural Systems with Stable Learning Mechanism

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes an uncertain rule-based fuzzy neural system (UFNS-S) with stable learning mechanism for nonlinear systems identification and control. The proposed UFNS-S system not only preserves the ability of handling uncertain information but also performs less computational effort. The sinusoidal perturbations are adopted to combine with the fuzzy term sets of UFNS-S. For training the UFNS-S systems on system identification and control applications, the gradient descent method with adaptive learning rate is derived. This guarantees the convergence of UFNS-S by choosing adaptive learning rates which enhance the convergent speed. This provides a simple way for choosing the learning rates for training the UFNS-S which also guarantees convergence and faster learning. Finally, the effectiveness and performance of the proposed approach is illustrated by several examples, computational complexity analysis, nonlinear system identification, and tracking control of two-link robot manipulator system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study. IEEE Trans. Ind. Electron. 55(8), 3133–3140 (2008)

    Article  Google Scholar 

  2. Brown, M., Harris, C.: Neurofuzzy adaptive modeling and control. Prentice-Hall, Upper Saddle River (1994)

    Google Scholar 

  3. Castillo, O., Melin, P., Pedrycz, W.: Design of interval type-2 fuzzy models through optimal granularity allocation. Appl. Soft Comput. 11(8), 5590–5601 (2011)

    Article  Google Scholar 

  4. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controller. Appl. Soft Comput. 12(4), 1267–1278 (2012)

    Article  Google Scholar 

  5. Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012)

    Article  Google Scholar 

  6. Chen, C.S.: Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(4), 694–706 (2011)

    Article  Google Scholar 

  7. Hagras, H.A.: Type-2 fuzzy control: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  8. Hidalgo, D., Melin, P., Castillo, O.: An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst. Appl. 39(4), 4590–4598 (2012)

    Article  Google Scholar 

  9. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft-computing. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  10. Juang, C.F., Tsao, Y.W.: A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning. IEEE Trans. Fuzzy Syst. 16(6), 1411–1424 (2008)

    Article  Google Scholar 

  11. Karaköse, M.: Sine-square Embedded Fuzzy Sets. IEEE International Conference on Systems Man and Cybernetics, pp. 3628–3631 (2010)

  12. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  13. Kuo, C.T., Lee, C.H.: Network-based type-2 fuzzy system with water flow like algorithm for system identification and signal processing. Smart Science 3(1), 21–34 (2015)

    Article  Google Scholar 

  14. Lee, C.H., Lin, Y.C.: An adaptive filter design via periodic fuzzy neural network. Sig. Process. 85(1), 401–411 (2005)

    Article  MATH  Google Scholar 

  15. Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8(4), 349–366 (2000)

    Article  Google Scholar 

  16. Lee, C. H., Lee, Y. H., Lin, C. M.: An efficient uncertain rule-based fuzzy neural systems development and applications. The 20th National Conference on Fuzzy Theory and Its Applications, Taichung, Taiwan, 2012

  17. Lee, C.H., Chang, F.Y., Lin, C.M.: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization. IEEE Trans. Cybern. 44(3), 329–341 (2014)

    Article  Google Scholar 

  18. Lee, C.H., Chang, F.Y.: On-line adaptive interval type-2 fuzzy controller design via stable SPSA learning mechanism. Int. J. Fuzzy Syst. 14(4), 489–500 (2012)

    MathSciNet  Google Scholar 

  19. Lee, C.H., Chang, F.Y., Lin, C.M.: DSP-based optical character recognition system using interval type-2 neural fuzzy system. Int. J. Fuzzy Syst. 1(1), 86–96 (2014)

    Google Scholar 

  20. Lee, C.H., Li, C.T., Chang, F.Y.: A species-based improved electromagnetism-like mechanism algorithm for TSK-type interval-valued neural fuzzy system optimization. Fuzzy Sets Syst. 171(1), 22–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, C.H., Hsueh, H.Y.: Observer-based adaptive control for a class of nonlinear non-affine systems using recurrent-type fuzzy logic systems. Int. J. Fuzzy Syst. 15(1), 55–65 (2013)

    MathSciNet  Google Scholar 

  22. Lee, Y. H.: Uncertain rule-based fuzzy neural systems development and applications. Master Thesis of Yuan Ze University, Department of Electrical Engineering (2012)

  23. Lin, C.M., Li, H.Y.: Intelligent hybrid control system design for antilock braking systems using self-organizing function-link fuzzy cerebellar model articulation controller. IEEE Trans. Fuzzy Syst. 21(6), 1044–1055 (2013)

    Article  Google Scholar 

  24. Lin, C.M., Li, H.Y.: TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 20(6), 1047–1054 (2012)

    Article  Google Scholar 

  25. Li, H.Y., Lin, C.M., Lee, C.H., Juang, J.G.: Adaptive function-link fuzzy CMAC control system design for MIMO nonlinear chaotic systems. Int. J. Fuzzy Syst. 16(4), 577–590 (2014)

    MathSciNet  Google Scholar 

  26. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–549 (2000)

    Article  Google Scholar 

  27. Lynch, C., Hagras, H., Callaghan, V.: Embedded type-2 FLC for real-time speed control of marine and traction diesel engines. 2005 IEEE International Conference on Fuzzy Systems, pp. 347–352 (2005)

  28. Melin, P., Mendoza, O., Castillo, O.: An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst. Appl. 37(12), 8527–8535 (2010)

    Article  Google Scholar 

  29. Melin, P., Mendoza, O., Castillo, O.: Face recognition with an improved interval type-2 fuzzy logic Sugeno integral and modular neural networks. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41(5), 1001–1012 (2011)

    Article  Google Scholar 

  30. Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Sig. Process. 80, 913–933 (2000)

    Article  MATH  Google Scholar 

  31. Huang, M.T., Lee, C.H., Lin, C.M.: Type-2 fuzzy cerebellar model articulation controller-based learning rate adjustment for blind source separation. Int. J. Fuzzy Syst. 16(3), 411–421 (2014)

    Google Scholar 

  32. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Article  Google Scholar 

  33. Turchetti, C., Biagetti, G., Gianfelici, F., Crippa, P.: Nonlinear system identification: an effective framework based on the Karhunen–Loève transform. IEEE Trans. Sig. ProcesS. 57(2), 536–550 (2009)

    Article  MATH  Google Scholar 

  34. Tzeng, Y.C., Chen, K.S.: A fuzzy neural network to SAR image classification. IEEE Trans. Geosci. Remote Sens. 36(1), 301–307 (1998)

    Article  Google Scholar 

  35. Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)

    Article  Google Scholar 

  36. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

    Article  Google Scholar 

  37. Wu, A., Tam, P.K.S.: A fuzzy neural network based on fuzzy hierarchy error approach. IEEE Trans. Fuzzy Syst. 8(6), 808–816 (2000)

    Article  Google Scholar 

  38. Wu, A., Tam, P.K.S.: Stable fuzzy neural tracking control of a class of unknown nonlinear systems based on fuzzy hierarchy error. IEEE Trans. Fuzzy Syst. 10(6), 779–789 (2002)

    Article  Google Scholar 

  39. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  40. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their insightful comments and valuable suggestions. This work was supported in part by the National Science Council, Taiwan, R.O.C., under contracts MOST-100-2221-E-005-093-MY2, 104-3011-E-005-001, 103-2218-E-005-005-MY2, and 102-2221-E-005-095-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CH., Lee, YH. & Lin, CM. Nonlinear Systems Identification and Control Using Uncertain Rule-based Fuzzy Neural Systems with Stable Learning Mechanism. Int. J. Fuzzy Syst. 19, 470–488 (2017). https://doi.org/10.1007/s40815-016-0170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0170-4

Keywords

Navigation