[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predictive Modeling and Planning of Robot Trajectories Using the Self-Organizing Map

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2004)

Abstract

In this paper, we propose an unsupervised neural network for prediction and planning of complex robot trajectories. A general approach is developed which allows Kohonen’s Self-Organizing Map (SOM) to approximate nonlinear input-output dynamical mappings for trajectory reproduction purposes. Tests are performed on a real PUMA 560 robot aiming to assess the computational characteristics of the method as well as its robustness to noise and parametric changes. The results show that the current approach outperforms previous attempts to predictive modeling of robot trajectories through unsupervised neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althöfer, K., Bugmann, G.: Planning and learning goal-directed sequences of robot arm movements. In: Fogelman-Soulié, F., Gallinari, P. (eds.) Proc. Int. Conf. on Artificial Neural Networks (ICANN), vol. I, pp. 449–454 (1995)

    Google Scholar 

  2. Araújo, A.F.R., Barreto, G.A.: A self-organizing context-based approach to tracking of multiple robot trajectories. Applied Intelligence 17(1), 99–116 (2002)

    Google Scholar 

  3. Barreto, G.A., Araújo, A.F.R.: Time in self-organizing maps: An overview of models. International Journal of ComputerResearch 10(2), 139–179 (2001)

    Google Scholar 

  4. Barreto, G.A., Araújo, A.F.R.: Nonlinear modelling of dynamic systems with the self-organizing map. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 975–980. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Barreto, G.A., Dücker, C., Ritter, H.: A distributed robotic control system based on a temporal self-organizing network. IEEE Transactions on Systems, Man, and Cybernetics-Part C 32(4), 347–357 (2002)

    Article  Google Scholar 

  6. Bugmann, G., Koay, K.L., Barlow, N., Phillips, M., Rodney, D.: Stable encoding of robot trajectories using normalised radial basis functions: Application to an autonomous wheelchair. In: Proc. 29th Int. Symposium on Robotics (ISR), Birmingham, UK, pp. 232–235 (1998)

    Google Scholar 

  7. Denham, M.J., McCabe, S.L.: Robot control using temporal sequence learning. In: Proc. World Congress on Neural Networks (WCNN), Washington DC, vol. II, pp. 346–349 (1995)

    Google Scholar 

  8. Fu, K., Gonzalez, R., Lee, C.: Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill, New York (1987)

    Google Scholar 

  9. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems – A survey. Automatica 28(6), 1083–1112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps, 2nd extended edn. Springer, Berlin (1997)

    Google Scholar 

  11. Raibert, M.H., Horn, B.K.P.: Manipulator control using the configuration space method. The Industrial Robot 5, 69–73 (1978)

    Article  Google Scholar 

  12. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self- Organizing Maps: An Introduction. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  13. Walter, J., Ritter, H.: Rapid learning with parametrized self-organizing maps. Neurocomputing 12, 131–153 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barreto, G.A., Araújo, A.F.R. (2004). Predictive Modeling and Planning of Robot Trajectories Using the Self-Organizing Map. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_118

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24677-0_118

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22007-7

  • Online ISBN: 978-3-540-24677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics