[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparing SONN Types for Efficient Robot Motion Planning in the Configuration Space

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 17 (IAS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 577))

Included in the following conference series:

  • 1217 Accesses

Abstract

Motion planning in the configuration space (C-space) induces benefits, such as smooth trajectories. It becomes more complex as the degrees of freedom (DOF) increase. This is due to the direct relation between the dimensionality of the search space and the DOF. Self-organizing neural networks (SONN) with their famous candidate, the Self-Organizing Map, have been proven to be useful tools for C-space reduction while preserving its underlying topology. In this work, the approach is adapted from human motion data towards robots’ kinematics. Furthermore, three additional models are implemented and compared to the existing ones with respect to their abilities to cover the used C-space of a robot and to preserve the topology. In total, the evaluation includes six SONN architectures, representing the consequent continuation of previous work. Generated Trajectories in the reduced SONN Output space were successfully tested in a robot simulation, providing a proof of concept for robot applications. The proposed method counteracts the Curse of Dimensionality for robots with many DOF, and thus a complete and optimal search algorithm can be used for path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreakis, A., Hoyningen-Huene, N.V., Beetz, M.: Incremental unsupervised time series analysis using merge growing neural gas. Lecture Notes in Computer Science 5629 LNCS, pp. 10–18 (2009)

    Google Scholar 

  2. Barreto, G.D.A., Araújo, A.F.R., Ritter, H.J.: Self-organizing feature maps for modeling and control of robotic manipulators. J. Intell. Robot. Syst. 36(4), 407–450 (2003)

    Google Scholar 

  3. Bishop, C.M., Hinton, G.E., Strachan, I.G.D.: GTM through time–Aston Research Explorer. ICANN, pp. 111–116 (1997)

    Google Scholar 

  4. Chappell, G.J., Taylor, J.G.: The temporal Kohønen map. Neural Netw. 6(3), 441–445 (1993)

    Article  Google Scholar 

  5. Cottrell, M., Olteanu, M., Rossi, F., Vialaneix, N.: Theoretical and applied aspects of the self-organizing maps. WSOM 11 (2016)

    Google Scholar 

  6. Estévez, P.A., Hernández, R.: Gamma SOM for temporal sequence processing. Lecture Notes in Computer Science 5629 LNCS, pp. 63–71 (2009)

    Google Scholar 

  7. Estévez, P.A., Vergara, J.R.: Nonlinear time series analysis by using gamma growing neural gas. Adv. Intell. Syst. Comput. 198, 205–214 (2013)

    Google Scholar 

  8. Euliano, N.R., Principe, J.C.: A spatio-temporal memory based on SOMs with activity diffusion. In: Kohonen Maps, pp. 253–265. Elsevier (1999)

    Google Scholar 

  9. Fontinele, H.I., Melo, D.B., Barreto, G.A.: Local models for learning inverse kinematics of redundant robots: a performance comparison. Adv. Intell. Syst. Comput. 428, 177–187 (2016)

    Google Scholar 

  10. Forest, F., Lebbah, M., Azzag, H., Lacaille, J.: A survey and implementation of performance metrics for self-organized maps. CoRR (2020)

    Google Scholar 

  11. Fritzke, B.: A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. (1995)

    Google Scholar 

  12. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. Trans. ANN 14(3), 491–505 (2003)

    MATH  Google Scholar 

  13. Hammer, B., Micheli, A., Neubauer, N., Sperduti, A., Strickert, M.: Self organizing maps for time series. WSOM, 115–122. (2005)

    Google Scholar 

  14. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps (1997)

    Google Scholar 

  16. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  17. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Temporal sequence processing using recurrent SOM. KES 1 (1998)

    Google Scholar 

  18. Martinetz, T., Schulten, K.: A Neural-Gas Network Learns Topologies (1991)

    Google Scholar 

  19. Martinetz, T.: Competitive Hebbian learning rule forms perfectly topology preserving maps. In: ICANN. Springer, London (1993)

    Google Scholar 

  20. Martinetz, T., Ritter, H.J., Schulten, K.J.: Learning of visuomotor coordination of a robot arm with redundant degrees of freedom. Parallel Process. Neural Syst. Comput. (1990)

    Google Scholar 

  21. Martinetz, T., Schulten, K.: Topology representing networks. Neural Netw. 7(3), 507–522 (1994)

    Article  Google Scholar 

  22. Miljkovic, D.: Brief review of self-organizing maps. In: MIPRO. Institute of Electrical and Electronics Engineers Inc., pp. 1061–1066 (2017)

    Google Scholar 

  23. Naumov, V., Karova, M., Zhelyazkov, D., Todorova, M., Penev, I., Nikolov, V., Petkov, V.: Robot path planning algorithm. Int. J. Comput. Commun. 9 (2015)

    Google Scholar 

  24. Prabhu, S.M., Garg, D.P.: Artificial neural network based robot control: an overview. J. Intell. Robot. Syst 15(4), 333–365 (1996)

    Article  Google Scholar 

  25. Saxon, J.B., Mukerjee, A.: Learning the motion map of a robot arm with neural networks. IJCNN, 777–782 (1990)

    Google Scholar 

  26. Schulz, R., Reggia, J.A.: Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps. Neural Comput. 16(3), 535–561 (2004)

    Article  MATH  Google Scholar 

  27. Simon, G., Lendasse, A., Cottrell, M., Fort, J.C., Verleysen, M.: Double SOM for long-term time series prediction. WSOM, pp. 35–40 (2003)

    Google Scholar 

  28. Somervuo, P.J.: Online algorithm for the self-organizing map of symbol strings (2004)

    Google Scholar 

  29. Steffen, L., Glueck, K., Ulbrich, S., Roennau, A., Dillmann, D.: Reducing the Dimension of the Configuration Space with Self Organizing Neural Networks. ICARM (2021)

    Google Scholar 

  30. Strickert, M., Hammer, B.: Merge SOM for temporal data. Neurocomputing 64, 39–71 (2005)

    Article  Google Scholar 

  31. Terlemez, Ö., Ulbrich, S., Mandery, C., Do, M., Vahrenkamp, N., Asfour, T.: Master Motor Map (MMM)–framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots. In: International Conference Humanoid Robots, pp. 894–901 (2015)

    Google Scholar 

  32. Tino, P., Kabán, A., Kabán, K., Sun, Y.: A Generative probabilistic approach to visualizing sets of symbolic sequences. Int. conf. Knowl. Discovery Data Min. 4, 701–706 (2004)

    Article  Google Scholar 

  33. Van Hulle, M.M.: Self-Organizing Maps. Tech. rep. (2012)

    Google Scholar 

  34. Vergara, J.R., Estévez, P.A.: A strategy for time series prediction using segment growing neural gas. WSOM (2017)

    Google Scholar 

  35. Vergara, J.R., Estévez, P.A., Serrano, Á.: Segment growing neural gas for nonlinear time series analysis. Adv. Intell. Syst. Comput. 428, 107–117 (2016)

    Google Scholar 

  36. Villmann, T., Der, R., Herrmann, M., Martinetz, T.M.: Topology preservation in self-organizing feature maps: exact definition and measurement (1997)

    Google Scholar 

  37. Voegtlin, T., Dominey, P.F.: Recursive self-organizing maps. In: Advanced in SOM, pp. 210–215. Springer, London (2001)

    Google Scholar 

  38. Wiemer, J.C.: The time-organized map algorithm: extending the self-organizing map to spatiotemporal signals. Neural Comput. 15, 1143–1171 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This research has been supported by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Steffen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steffen, L., Weyer, T., Glueck, K., Ulbrich, S., Roennau, A., Dillmann, R. (2023). Comparing SONN Types for Efficient Robot Motion Planning in the Configuration Space. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_13

Download citation

Publish with us

Policies and ethics