Abstract
We propose new symbolic-numerical algorithms implemented in Maple-Fortran environment for solving the self-adjoint elliptic boundary-value problem in a d-dimensional polyhedral finite domain, using the high-accuracy finite element method with multivariate Lagrange elements in the simplexes. The high-order fully symmetric PI-type Gaussian quadratures with positive weights and no points outside the simplex are calculated by means of the new symbolic-numerical algorithms implemented in Maple. Quadrature rules up to order 8 on the simplexes with dimension \(d=3-6\) are presented. We demonstrate the efficiency of algorithms and programs by benchmark calculations of a low part of spectra of exactly solvable Helmholtz problems for a cube and a hypercube.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)
Akishin, P.G., Zhidkov, E.P.: Some symmetrical numerical integration formuas for simplexes. Communications of the JINR 11–81-395, Dubna (1981). (in Russian)
Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)
Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Meth. Eng. 106, 213–240 (2016)
Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)
Cui, T., Leng, W., Lin, D., Ma, S., Zhang, L.: High order mass-lumping finite elements on simplexes. Numer. Math. Theor. Meth. Appl. 10(2), 331–350 (2017)
Dobrowolski, A., Mazurek, K., Góźdź, A.: Consistent quadrupole-octupole collective model. Phys. Rev. C 94, 054322-1–054322-20 (2017)
Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Eng. 21, 1129–1148 (1985)
Gusev, A.A., et al.: Symbolic-numerical algorithm for generating interpolation multivariate hermite polynomials of high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 134–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_11
Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_12
Gusev, A.A., et al.: Symbolic algorithm for generating irreducible rotational-vibrational bases of point groups. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 228–242. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6_15
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)
Marquardt, D.: An algorithm for least squares estimation of parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)
Maeztu, J.I., Sainz de la Maza, E.: Consistent structures of invariant quadrature rules for the \(n\)-simplex. Math. Comput. 64, 1171–1192 (1995)
Mead, D.G.: Dissection of the hypercube into simplexes. Proc. Am. Math. Soc. 76, 302–304 (1979)
Mysovskikh, I.P.: Interpolation Cubature Formulas. Nauka, Moscow (1981). (in Russian)
Papanicolopulos, S.-A.: Analytical computation of moderate-degree fully-symmetric quadrature rules on the triangle. arXiv:1111.3827v1 [math.NA] (2011)
Sainz de la Maza, E.: Fórmulas de cuadratura invariantes de grado 8 para el simplex 4-dimensional. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería 15(3), 375–379 (1999)
Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)
Zhang, L., Cui, T.: Liu. H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. 27, 89–96 (2009)
Acknowledgment
The work was partially supported by the RFBR (grant No. 16-01-00080 and 18-51-18005), the MES RK (Grant No. 0333/GF4), the Bogoliubov-Infeld program, the Hulubei–Meshcheryakov program, the RUDN University Program 5-100 and grant of Plenipotentiary of the Republic of Kazakhstan in JINR. The authors are grateful to prof. R. Enkhbat for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Gusev, A.A. et al. (2018). Symbolic-Numerical Algorithms for Solving Elliptic Boundary-Value Problems Using Multivariate Simplex Lagrange Elements. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-99639-4_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99638-7
Online ISBN: 978-3-319-99639-4
eBook Packages: Computer ScienceComputer Science (R0)