[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symbolic Algorithm for Generating Irreducible Rotational-Vibrational Bases of Point Groups

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Abstract

Symbolic algorithm implemented in computer algebra system for generating irreducible representations of the point symmetry groups in the rotor + shape vibrational space of a nuclear collective model in the intrinsic frame is presented. The method of generalized projection operators is used. The generalized projection operators for the intrinsic group acting in the space \(\mathrm {L}^2(\text {SO(3)})\) and in the space spanned by the eigenfunctions of a multidimensional harmonic oscillator are constructed. The efficiency of the scheme is investigated by calculating the bases of irreducible representations subgroup \(\overline{\text {D}}_{4y}\) of octahedral group in the intrinsic frame of a quadrupole-octupole nuclear collective model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  2. Barut, A., Ra̧czka, R.: Theory of Group Representations and Applications. PWN, Warszawa (1977)

    Google Scholar 

  3. Chen, J.Q., Ping, J., Wang, F.: Group Representation Theory for Physicists. World Sci., Singapore (2002)

    Book  MATH  Google Scholar 

  4. Cornwell, J.F.: Group Theory in Physics. Academic Press, New York (1984)

    MATH  Google Scholar 

  5. Doan, Q.T., et al.: Spectroscopic information about a hypothetical tetrahedral configuration in \({}^{156}\)Gd. Phys. Rev. C 82, 067306 (2010)

    Article  Google Scholar 

  6. Dobrowolski, A., Góźdź, A., Szulerecka, A.: Electric transitions within the symmetrized tetrahedral and octahedral states. Phys. Scr. T154, 014024 (2013)

    Article  Google Scholar 

  7. Dudek, J., Góźdź, A., Schunck, N., Miśkiewicz, M.: Nuclear tetrahedral symmetry: possibly present throughout the Periodic Table. Phys. Rev. Lett. 88, 252502 (2002)

    Article  Google Scholar 

  8. Góźdź, A., Dobrowolski, A., Pȩdrak, A., Szulerecka, A., Gusev, A.A., Vinitsky, S.I.: Structure of Bohr type nuclear collective spaces - a few symmetry related problems. Nucl. Theory 32, 108–122 (2013)

    Google Scholar 

  9. Góźdź, A., Pȩdrak, A., Dobrowolski, A., Szulerecka, A., Gusev, A.A., Vinitsky, S.I.: Shapes and symmetries of nuclei. Bulg. J. Phys. 42, 494–502 (2015)

    Google Scholar 

  10. Góźdź, A., Szulerecka, A., Dobrowolski, A., Dudek, J.: Nuclear collective models and partial symmetries. Acta Phys. Pol. B 42, 459–463 (2011)

    Article  Google Scholar 

  11. Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., Derbov, V.L., Góźdź, A.: Symbolic algorithm for irreducible bases of point groups in the space of SO(3) group. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, pp. 166–181. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  12. Pogosyan, G.S., Smorodinsky, A.Y., Ter-Antonyan, V.M.: Oscillator Wigner functions. J. Phys. A 14, 769–776 (1981)

    Article  Google Scholar 

  13. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, New York (1980)

    Book  Google Scholar 

  14. Rojansky, V.: On the theory of the Stark effect in hydrogenic atoms. Phys. Rev. 33, 1–15 (1929)

    Article  MATH  Google Scholar 

  15. Szulerecka, A., Dobrowolski, A., Góźdź, A.: Generalized projection operators for intrinsic rotation group and nuclear collective model. Phys. Scr. 89, 054033 (2014)

    Article  Google Scholar 

  16. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Sci., Singapore (1989)

    MATH  Google Scholar 

  17. Vilenkin, J.A., Klimyk, A.U.: Representation of Lie Group and Special Functions, vol. 2. Kluwer Academic Publ., Dordrecht (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Vinitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gusev, A.A. et al. (2016). Symbolic Algorithm for Generating Irreducible Rotational-Vibrational Bases of Point Groups. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics