Abstract
Symbolic algorithm implemented in computer algebra system for generating irreducible representations of the point symmetry groups in the rotor + shape vibrational space of a nuclear collective model in the intrinsic frame is presented. The method of generalized projection operators is used. The generalized projection operators for the intrinsic group acting in the space \(\mathrm {L}^2(\text {SO(3)})\) and in the space spanned by the eigenfunctions of a multidimensional harmonic oscillator are constructed. The efficiency of the scheme is investigated by calculating the bases of irreducible representations subgroup \(\overline{\text {D}}_{4y}\) of octahedral group in the intrinsic frame of a quadrupole-octupole nuclear collective model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)
Barut, A., Ra̧czka, R.: Theory of Group Representations and Applications. PWN, Warszawa (1977)
Chen, J.Q., Ping, J., Wang, F.: Group Representation Theory for Physicists. World Sci., Singapore (2002)
Cornwell, J.F.: Group Theory in Physics. Academic Press, New York (1984)
Doan, Q.T., et al.: Spectroscopic information about a hypothetical tetrahedral configuration in \({}^{156}\)Gd. Phys. Rev. C 82, 067306 (2010)
Dobrowolski, A., Góźdź, A., Szulerecka, A.: Electric transitions within the symmetrized tetrahedral and octahedral states. Phys. Scr. T154, 014024 (2013)
Dudek, J., Góźdź, A., Schunck, N., Miśkiewicz, M.: Nuclear tetrahedral symmetry: possibly present throughout the Periodic Table. Phys. Rev. Lett. 88, 252502 (2002)
Góźdź, A., Dobrowolski, A., Pȩdrak, A., Szulerecka, A., Gusev, A.A., Vinitsky, S.I.: Structure of Bohr type nuclear collective spaces - a few symmetry related problems. Nucl. Theory 32, 108–122 (2013)
Góźdź, A., Pȩdrak, A., Dobrowolski, A., Szulerecka, A., Gusev, A.A., Vinitsky, S.I.: Shapes and symmetries of nuclei. Bulg. J. Phys. 42, 494–502 (2015)
Góźdź, A., Szulerecka, A., Dobrowolski, A., Dudek, J.: Nuclear collective models and partial symmetries. Acta Phys. Pol. B 42, 459–463 (2011)
Gusev, A.A., Gerdt, V.P., Vinitsky, S.I., Derbov, V.L., Góźdź, A.: Symbolic algorithm for irreducible bases of point groups in the space of SO(3) group. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, pp. 166–181. Springer, Heidelberg (2015)
Pogosyan, G.S., Smorodinsky, A.Y., Ter-Antonyan, V.M.: Oscillator Wigner functions. J. Phys. A 14, 769–776 (1981)
Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, New York (1980)
Rojansky, V.: On the theory of the Stark effect in hydrogenic atoms. Phys. Rev. 33, 1–15 (1929)
Szulerecka, A., Dobrowolski, A., Góźdź, A.: Generalized projection operators for intrinsic rotation group and nuclear collective model. Phys. Scr. 89, 054033 (2014)
Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Sci., Singapore (1989)
Vilenkin, J.A., Klimyk, A.U.: Representation of Lie Group and Special Functions, vol. 2. Kluwer Academic Publ., Dordrecht (1993)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Gusev, A.A. et al. (2016). Symbolic Algorithm for Generating Irreducible Rotational-Vibrational Bases of Point Groups. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-45641-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45640-9
Online ISBN: 978-3-319-45641-6
eBook Packages: Computer ScienceComputer Science (R0)