[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Granular Rough Computing: Epsilon Homogenous Granulation

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11103))

Included in the following conference series:

Abstract

In this work we have proposed a new technique of granulation in the family of methods inspired by Polkowski standard granulation algorithm. The new method is called epsilon homogenous granulation. The idea is to create the epsilon granules around the training objects lowering the r-indiscernibility ratio until the group of objects is homogenous in the sense of their belongingness to decision class of central object. We use epsilon granules, which means that during granulation process of numerical data we consider indiscernibility ratio of descriptors. The main advantage of this method in addition to reduction in the number of training objects is that there is no need to estimate the optimal granulation radii. The process of granulation is run only once, and the radii for particular objects are formed in automatic way - dependent on indiscernibility ratio of data and their homogeneity in decision concepts. Next step is to cover the original decision system with formed granules and get the final granular decision system by \(\varepsilon \)-majority voting method. We have performed preliminary experiments with use of multiple cross validation methods. We have used selected data sets from University of California, Irvine machine learning repository for our research. To verify the quality of approximation we used k-NN classifier designed for our granulation method. The method seems to be comparable with the ones of previous algorithms, with satisfying effectiveness in classification and significant reduction in number of training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artiemjew, P.: Classifiers from granulated data sets: concept dependent and layered granulation. In: Proceedings of RSKD 2007, the Workshops at ECML/PKDD 2007, pp. 1–9. Warsaw University Press, Warsaw (2007)

    Google Scholar 

  2. Artiemjew, P.: Natural versus granular computing: classifiers from granular structures. In: Proceedings of 6th International Conference on Rough Sets and Current Trends in Computing RSCTC 2008, Akron OH, USA (2008)

    Google Scholar 

  3. Artiemjew, P.: A review of the knowledge granulation methods: discrete vs. continuous algorithms. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. Intelligent Systems Reference Library, vol. 43, pp. 41–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30341-8_4

  4. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  5. Polap, D., Wozniak, M., Wei, W., Damasevicius, R.: Multi-threaded Learning Control Mechanism for Neural Networks. Future Generation Computer Systems. Elsevier (2018)

    Google Scholar 

  6. Polkowski, L.: Rough Sets. Mathematical Foundations. Physica Verlag, Heidelberg (2002)

    Book  Google Scholar 

  7. Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 70–77. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39205-X_9

    Chapter  MATH  Google Scholar 

  8. Polkowski, L.: Toward rough set foundations. Mereological approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25929-9_2

    Chapter  MATH  Google Scholar 

  9. Polkowski, L.: Granulation of knowledge in decision systems: the approach based on rough inclusions. The method and its applications. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 69–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73451-2_9

    Chapter  Google Scholar 

  10. Polkowski, L.: Formal granular calculi based on rough inclusions. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC05, Beijing, China, pp. 57–62. IEEE Press (2005)

    Google Scholar 

  11. Polkowski, L.: A model of granular computing with applications. In: Proceedings of IEEE 2006 Conference on Granular Computing GrC06, Atlanta, USA, pp. 9–16. IEEE Press (2006)

    Google Scholar 

  12. Polkowski, L.: The paradigm of granular rough computing. In: Proceedings ICCI 2007, Lake Tahoe NV, pp. 145–163. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  13. Polkowski, L.: A unified approach to granulation of knowledge and granular computing based on rough mereology: a survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–401. Wiley, New York (2008)

    Google Scholar 

  14. Polkowski, L.: Granulation of knowledge: similarity based approach in information and decision systems. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Sciences. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4614-1800-9_94. article 00788

    Chapter  Google Scholar 

  15. Polkowski, L.: Approximate Reasoning by Parts. An Introduction to Rough Mereology. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22279-5

    Book  Google Scholar 

  16. Polkowski, L., Artiemjew, P.: On granular rough computing with missing values. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 271–279. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73451-2_29

    Chapter  Google Scholar 

  17. Polkowski, L., Artiemjew, P.: On granular rough computing: factoring classifiers through granulated decision systems. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 280–289. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73451-2_30

    Chapter  Google Scholar 

  18. Polkowski, L., Artiemjew, P.: Towards granular computing: classifiers induced from granular structures. In: Proceedings RSKD 2007, the Workshops at ECML/PKDD 2007, pp. 43–53. Warsaw University Press, Warsaw (2007)

    Google Scholar 

  19. Polkowski, L., Artiemjew, P.: Classifiers based on granular structures from rough inclusions. In: Proceedings of 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 2008, Torremolinos, Malaga, Spain, pp. 1786–1794 (2008)

    Google Scholar 

  20. Polkowski, L., Artiemjew, P.: Rough sets in data analysis: foundations and applications. In: Smoliński, T.G., Milanova, M., Hassanien, A.-E. (eds.) Applications of Computional Intelligence in Biology: Current Trends and open Problems, SCI, vol. 122, pp. 33–54. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Polkowski, L., Artiemjew, P.: Rough mereology in classification of data: voting by means of residual rough inclusions. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 113–120. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88425-5_12

    Chapter  MATH  Google Scholar 

  22. Polkowski, L., Artiemjew, P.: A study in granular computing: on classifiers induced from granular reflections of data. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 230–263. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89876-4_14

    Chapter  MATH  Google Scholar 

  23. Polkowski, L., Artiemjew, P.: On classifying mappings induced by granular structures. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 264–286. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89876-4_15

    Chapter  MATH  Google Scholar 

  24. Polkowski, L., Artiemjew, P.: Granular computing in decision approximation - an application of rough mereology. In: Intelligent Systems Reference Library, vol. 77, pp. 1–422. Springer, Heidelberg (2015). ISBN 978-3-319-12879-5. https://doi.org/10.1007/978-3-319-12880-1

  25. Ohno-Machado, L.: Cross-validation and bootstrap ensembles, bagging, boosting, Harvard-MIT division of health sciences and technology (2005). http://ocw.mit.edu/courses/health-sciences-and-technology/hst-951j-medical-decision-support-fall-2005/lecture-notes/hst951_6.pdf HST.951J: Medical Decision Support, Fall

  26. University of California, Irvine Machine Learning Repository. https://archive.ics.uci.edu/ml/index.php

  27. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, North-Holland, Amsterdam, pp. 3–18 (1979)

    Google Scholar 

Download references

Acknowledgements

The research has been supported by grant 23:610:007-300 from Ministry of Science and Higher Education of the Republic of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Ropiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ropiak, K., Artiemjew, P. (2018). On Granular Rough Computing: Epsilon Homogenous Granulation. In: Nguyen, H., Ha, QT., Li, T., Przybyła-Kasperek, M. (eds) Rough Sets. IJCRS 2018. Lecture Notes in Computer Science(), vol 11103. Springer, Cham. https://doi.org/10.1007/978-3-319-99368-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99368-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99367-6

  • Online ISBN: 978-3-319-99368-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics