[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Rough Sets In Data Analysis: Foundations and Applications

  • Chapter
Applications of Computational Intelligence in Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 122))

Summary

Rough sets is a paradigm introduced in order to deal with uncertainty due to ambiguity of classification caused by incompleteness of knowledge. The idea proposed by Z. Pawlak in 1982 goes back to classical idea of representing uncertain and/or inexact notions due to the founder of modern logic, Gottlob Frege: uncertain notions should possess around them a region of uncertainty consisting of objects that can be qualified with certainty neither into the notion nor to its complement. The central tool in realizing this idea in rough sets is the relation of uncertainty based on the classical notion of indiscernibility due to Gottfried W. Leibniz: objects are indiscernible when no operator applied to each of them yields distinct values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazan JG (1998) A comparison of dynamic and non–dynamic rough set methods for extracting laws from decision tables. In: Polkowski L, Skowron A (eds.), Rough Sets in Knowledge Discovery 1. Physica, Heidelberg 321–365

    Google Scholar 

  2. Bazan JG, Synak P, Wróblewski J, Nguyen SH, Nguyen HS (2000) Rough set algorithms in classification problems. In: Polkowski L, Tsumoto S, Lin TY (eds.) Rough Set Methods and Applications. New Developments in Knowledge Discovery in Information Systems, Physica , Heidelberg 49–88

    Google Scholar 

  3. Brown MF (2003) Boolean Reasoning: The Logic of Boolean Equations, 2nd ed., Dover, New York

    MATH  Google Scholar 

  4. Czyżewski A, et al. (2004) Musical phrase representation and recognition by means of neural networks and rough sets, Transactions on Rough Sets I. Lecture Notes in Computer Science 3100, Springer, Berlin 254–278

    Google Scholar 

  5. Duda RO, Hart PE, Stork DG (2001) Pattern Classication, John Wiley and Sons, New York

    Google Scholar 

  6. Frege G (1903) Grundlagen der Arithmetik II, Jena

    Google Scholar 

  7. Grzymala–Busse JW (1992) LERS – a system for learning from examples based on rough sets. In: Slowinski R (ed.) Intelligent Decision Support: Handbook of Advances and Applications of the Rough Sets Theory. Kluwer, Dordrecht 3–18

    Google Scholar 

  8. Grzymala–Busse JW, Ming H (2000) A comparison of several approaches to missing attribute values in data mining, Lecture Notes in AI 2005, Springer, Berlin, 378–385

    Google Scholar 

  9. Grzymala–Busse JW (2004) Data with missing attribute values: Generalization of indiscernibility relation and rule induction, Transactions on Rough Sets I. Lecture Notes in Computer Science 3100, Springer, Berlin 78–95

    Google Scholar 

  10. Klöosgen W, żytkow J (eds.) (2002) Handbook of Data Mining and Knowledge Discovery, Oxford University Press, Oxford

    Google Scholar 

  11. Kryszkiewicz M (1999) Rules in incomplete information systems, Information Sciences 113:271–292

    Article  MATH  MathSciNet  Google Scholar 

  12. Kryszkiewicz M, Rybiński H (2000) Data mining in incomplete information systems from rough set perspective. In: Polkowski L, Tsumoto S, Lin TY (eds.) Rough Set Methods and Applications, Physica Verlag, Heidelberg 568–580

    Google Scholar 

  13. Leśniewski S (1916) Podstawy Ogólnej Teoryi Mnogosci (On the Foundations of Set Theory), in Polish. See English translation (1982) Topoi 2:7–52

    Google Scholar 

  14. Lin TY (2005) Granular computing: Examples, intuitions, and modeling. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC05, Beijing

    Google Scholar 

  15. Michalski RS, et al (1986) The multi–purpose incremental learning system AQ15 and its testing to three medical domains. In: Proceedings of AAAI-86, Morgan

    Google Scholar 

  16. Nguyen HS (1997) Discretization of Real Valued Attributes: Boolean Reasoning Approach, PhD Dissertation, Warsaw University, Department of Mathematics, Computer Science and Mechanics

    Google Scholar 

  17. Nguyen HS, Skowron A (1995) Quantization of real valued attributes: Rough set and Boolean reasoning approach, In: Proceedings 2nd Annual Joint Conference on Information Sciences, Wrightsville Beach NC 34–37

    Google Scholar 

  18. Nguyen SH (2000) Regularity analysis and its applications in Data Mining, In: Polkowski L, Tsumoto S, Lin TY (eds.), Physica Verlag, Heidelberg 289–378

    Google Scholar 

  19. Pal S K, Dasgupta B, Mitra P (2004) Rough–SOM with fuzzy discretization. In: Pal SK, Polkowski L, Skowron A (eds.), Rough – Neural Computing. Techniques for Computing with Words. Springer, Berlin 351–372

    Google Scholar 

  20. Pawlak Z (1982) Rough sets, Int. J. Computer and Information Sci. 11:341–356

    Article  MATH  MathSciNet  Google Scholar 

  21. Pawlak Z (1991) Rough sets: Theoretical Aspects of Reasoning About Data. Kluwer, Dordrecht

    MATH  Google Scholar 

  22. Pawlak Z, Skowron A (1993) A rough set approach for decision rules generation. In: Proceedings of IJCAI'93Workshop W12. The Management of Uncertainty in AI; also ICS Research Report 23/93,Warsaw University of Technology, Institute of Computer Science

    Google Scholar 

  23. Polkowski L (2002) Rough Sets. Mathematical Foundations, Physica Verlag, Heidelberg

    MATH  Google Scholar 

  24. Polkowski L (2004) Toward rough set foundations. Mereological approach. In: Proceedings RSCTC04, Uppsala, Sweden, Lecture Notes in AI 3066, Springer, Berlin 8–25

    Google Scholar 

  25. Polkowski L (2005) Formal granular calculi based on rough inclusions. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC05, Beijing, China, IEEE Press 57–62

    Google Scholar 

  26. Polkowski L (2005) Rough–fuzzy–neurocomputing based on rough mereological calculus of granules, International Journal of Hybrid Intelligent Systems 2:91–108

    MATH  Google Scholar 

  27. Polkowski L (2006) A model of granular computing with applications. In: Proceedings of IEEE 2006 Conference on Granular Computing GrC06, Atlanta, USA. IEEE Press 9–16

    Google Scholar 

  28. Polkowski L, Artiemjew P (2007) On granular rough computing: Factoring classi_ers through granular structures. In: Proceedings RSEISP'07,Warsaw, Lecture Notes in AI 4585, Springer, Berlin, 280–289

    Google Scholar 

  29. Polkowski L, Skowron A (1997) Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15:333–365

    Article  MathSciNet  Google Scholar 

  30. Polkowski L, Skowron A (eds.) (1998) Rough Sets in Knowledge Discovery 2. Physica Verlag, Heidelberg

    MATH  Google Scholar 

  31. Polkowski L, Skowron A (1999) Towards an adaptive calculus of granules. In: Zadeh L A, Kacprzyk J (eds.) Computing withWords in Information/Intelligent Systems 1. Physica Verlag, Heidelberg 201–228

    Google Scholar 

  32. Semeniuk–Polkowska M (2007) On conjugate information systems: A proposition on how to learn concepts in humane sciences by means of rough set theory, Transactions on Rough Sets VI. Lecture Notes in Computer Science 4374:298–307, Springer, Berlin

    Article  Google Scholar 

  33. Skowron A et al (1994) RSES: A system for data analysis. Available: logic.mimuw.edu.pl/~rses/

  34. Skowron A (1993) Boolean reasoning for decision rules generation. In: Komorowski J, Ras Z (eds.), Proceedings of ISMIS'93. Lecture Notes in AI 689:295–305. Springer, Berlin

    Google Scholar 

  35. Skowron A, Rauszer C (1992) The discernibility matrices and functions in decision systems. In: Slowiński R (ed) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht 311–362

    Google Scholar 

  36. Skowron A, Swiniarski RW (2004) Information granulation and pattern recognition. In: Pal S K, Polkowski L, Skowron A (eds.), Rough – Neural Computing. Techniques for Computing with Words. Springer, Berlin 599–636

    Google Scholar 

  37. Stefanowski J (2006) On combined classi_ers, rule induction and rough sets, Transactions on Rough Sets VI. Lecture Notes in Computer Science 4374:329–350. Springer, Berlin

    Article  Google Scholar 

  38. Stefanowski J, Tsoukias A (2001) Incomplete information tables and rough classication. Computational Intelligence 17:545–566

    Article  Google Scholar 

  39. Swiniarski RW, Skowron A (2004) Independent component analysis, principal component analysis and rough sets in face recognition, Transactions on Rough Sets I. Lecture Notes in Computer Science 3100:392–404. Springer, Berlin

    Google Scholar 

  40. UCI Repository: http://www.ics.uci.edu./~mlearn/databases/

  41. Wojdy l lo P (2004) WaRS: A method for signal classification. In: Pal S K, Polkowski L, Skowron A (eds.), Rough – Neural Computing. Techniques for Computing with Words. Springer, Berlin 649–688

    Google Scholar 

  42. Wojna A (2005) Analogy–based reasoning in classi_er construction, Transactions on Rough Sets IV. Lecture Notes in Computer Science 3700:277–374. Springer, Berlin

    Article  MathSciNet  Google Scholar 

  43. Wróblewski J (2004) Adaptive aspects of combining approximation spaces. In: Pal S K, Polkowski L, Skowron A (eds.), Rough – Neural Computing. Techniques for Computing with Words. Springer, Berlin 39–156

    Google Scholar 

  44. Zadeh LA (1979) Fuzzy sets and information granularity. In: Gupta M, Ragade R, Yaeger RR (eds.) Advances in Fuzzy Set Theory and Applications. North–Holland, Amsterdam 3–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Polkowski, L., Artiemjew, P. (2008). Rough Sets In Data Analysis: Foundations and Applications. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78534-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78534-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78533-0

  • Online ISBN: 978-3-540-78534-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics