[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Weaving of Metaheuristics with Cooperative Parallelism

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

  • 1887 Accesses

Abstract

We propose PHYSH (Parallel HYbridization for Simple Heuristics), a framework to ease the design and implementation of hybrid metaheuristics via cooperative parallelism. With this framework, the user only needs encode each of the desired metaheuristics and may rely on PHYSH for parallelization, cooperation and hybridization. PHYSH supports the combination of population-based and single-solution metaheuristics and enables the user to control the tradeoff between intensification and diversification. We also provide an open-source implementation of this framework which we use to model the Quadratic Assignment Problem (QAP) with a hybrid solver, combining three metaheuristics. We present experimental evidence that PHYSH brings significant improvements over competing approaches, as witness the performance on representative hard instances of QAP.

This work was partly funded by FCT under grant UID/CEC/4668/2016 (LISP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Terms “immigration” and “emigration” are from the metaheuristics point-of-view.

  2. 2.

    The source code is available from https://github.com/jlopezrf/COPSolver-V_2.0.

References

  1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

    Article  Google Scholar 

  2. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem library. Eur. J. Oper. Res. 55(1), 115–119 (1991)

    Article  Google Scholar 

  3. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism for constraint-based local search: the costas array case study. Constraints 20(1), 30–56 (2015)

    Article  Google Scholar 

  4. Crainic, T., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel variable neighborhood search for the p-median. J. Heuristics 10(3), 293–314 (2004)

    Article  Google Scholar 

  5. Crainic, T., Toulouse, M.: Parallel meta-heuristics. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 497–541. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_17

    Chapter  Google Scholar 

  6. Drezner, Z.: The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 160(2), 416–422 (2005)

    Article  MathSciNet  Google Scholar 

  7. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann/Elsevier, Burlington (2004)

    MATH  Google Scholar 

  9. Misevicius, A.: A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 30(1), 95–111 (2005)

    Article  MathSciNet  Google Scholar 

  10. Moscato, P., Cotta, C.: Memetic algorithms. In: Handbook of Applied Optimization, vol. 157, p. 168 (2002)

    Google Scholar 

  11. Munera, D., Diaz, D., Abreu, S.: Hybridization as cooperative parallelism for the quadratic assignment problem. In: Blesa, M.J., et al. (eds.) HM 2016. LNCS, vol. 9668, pp. 47–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39636-1_4

    Chapter  Google Scholar 

  12. Munera, D., Diaz, D., Abreu, S.: Solving the quadratic assignment problem with cooperative parallel extremal optimization. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_17

    Chapter  Google Scholar 

  13. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A parametric framework for cooperative parallel local search. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 13–24. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44320-0_2

    Chapter  Google Scholar 

  14. Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible cooperation in parallel local search. In: Symposium on Applied Computing, SAC 2014, pp. 1360–1361. ACM Press, Gyeongju (2014)

    Google Scholar 

  15. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving hard stable matching problems via local search and cooperative parallelization. In: AAAI, Austin, TX, USA (2015)

    Google Scholar 

  16. Novoa, C., Qasem, A., Chaparala, A.: A SIMD tabu search implementation for solving the quadratic assignment problem with GPU acceleration. In: Proceedings of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced Cyberinfrastructure - XSEDE 2015, pp. 1–8 (2015)

    Google Scholar 

  17. Palubeckis, G.: An algorithm for construction of test cases for the quadratic assignment problem. Inform. Lith. Acad. Sci. 11(3), 281–296 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Saifullah Hussin, M.: Stochastic local search algorithms for single and bi-objective quadratic assignment problems. Ph.D. thesis. Université de Bruxelles (2016)

    Google Scholar 

  19. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  20. Talbi, E.G., Bachelet, V.: COSEARCH: a parallel cooperative metaheuristic. J. Math. Model. Algorithms 5(1), 5–22 (2006)

    Article  MathSciNet  Google Scholar 

  21. Toulouse, M., Crainic, T., Gendreau, M.: Communication issues in designing cooperative multi-thread parallel searches. In: Osman, I., Kelly, J. (eds.) Meta-Heuristics: Theory & Applications, pp. 501–522. Kluwer Academic Publishers, Norwell (1995)

    Google Scholar 

  22. Tsutsui, S., Fujimoto, N.: An analytical study of parallel GA with independent runs on GPUs. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs. NCS, vol. 8, pp. 105–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37959-8_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Abreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López, J., Múnera, D., Diaz, D., Abreu, S. (2018). Weaving of Metaheuristics with Cooperative Parallelism. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics