[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Parametric Framework for Cooperative Parallel Local Search

  • Conference paper
Evolutionary Computation in Combinatorial Optimisation (EvoCOP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8600))

Abstract

In this paper we address the problem of parallelizing local search. We propose a general framework where different local search engines cooperate (through communication) in the quest for a solution. Several parameters allow the user to instantiate and customize the framework, like the degree of intensification and diversification. We implemented a prototype in the X10 programming language based on the adaptive search method. We decided to use X10 in order to benefit from its ease of use and the architectural independence from parallel resources which it offers. Initial experiments prove the approach to be successful, as it outperforms previous systems as the number of processes increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 31.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 39.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbelaez, A., Codognet, P.: Massively Parallel Local Search for SAT. In: 2012 IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI), Athens, pp. 57–64. IEEE (November 2012)

    Google Scholar 

  2. Caniou, Y., Codognet, P., Diaz, D., Abreu, S.: Experiments in Parallel Constraint-Based Local Search. In: Hao, J.-K., Merz, P. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 96–107. Springer, Heidelberg (2011)

    Google Scholar 

  3. Codognet, P., Díaz, D.: Yet another local search method for constraint solving. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Codognet, P., Diaz, D.: An Efficient Library for Solving CSP with Local Search. In: 5th International Conference on Metaheuristics, Kyoto, Japan, pp. 1–6 (2003)

    Google Scholar 

  5. Cortes, O.A.C., da Silva, J.C.: A Local Search Algorithm Based on Clonal Selection and Genetic Mutation for Global Optimization. In: 2010 Eleventh Brazilian Symposium on Neural Networks, pp. 241–246. IEEE (2010)

    Google Scholar 

  6. Crainic, T.G., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative parallel variable neighborhood search for the p-median. Journal of Heuristics 10(3), 293–314 (2004)

    Article  Google Scholar 

  7. Diaz, D., Abreu, S., Codognet, P.: Targeting the Cell Broadband Engine for constraint-based local search. Concurrency and Computation: Practice and Experience (CCP&E) 24(6), 647–660 (2011)

    Article  Google Scholar 

  8. Diaz, D., Richoux, F., Caniou, Y., Codognet, P., Abreu, S.: Parallel Local Search for the Costas Array Problem. In: Parallel Computing and Optimization, PCO 2012, Shanghai, China. IEEE (May 2012)

    Google Scholar 

  9. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical report (1999)

    Google Scholar 

  10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (July 1997)

    Google Scholar 

  11. Glover, F., Laguna, M., Martí, R.: Fundamentals of Scatter Search and Path Relinking. Control and Cybernetics 29(3), 653–684 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Gonzalez, T. (ed.): Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall / CRC (2007)

    Google Scholar 

  13. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann / Elsevier (2004)

    Google Scholar 

  14. Kadioglu, S., Sellmann, M.: Dialectic Search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 486–500. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Machado, R., Abreu, S., Diaz, D.: Parallel local search: Experiments with a pgas-based programming model. CoRR, abs/1301.7699 (2013), Proceedings of PADL 2013, Rome, Italy

    Google Scholar 

  16. Machado, R., Abreu, S., Diaz, D.: Parallel Performance of Declarative Programming Using a PGAS Model ((forthcoming)). In: Sagonas, K. (ed.) PADL 2013. LNCS, vol. 7752, pp. 244–260. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Munera, D., Diaz, D., Abreu, S.: Towards Parallel Constraint-Based Local Search with the X10 Language. In: 20th International Conference on Applications of Declarative Programming and Knowledge Management (INAP), Kiel, Germany (2013)

    Google Scholar 

  18. Pascal, V.H., Laurent, M.: Constraint-Based Local Search. The MIT Press (2005)

    Google Scholar 

  19. Saraswat, V., Almasi, G., Bikshandi, G., Cascaval, C., Cunningham, D., Grove, D., Kodali, S., Peshansky, I., Tardieu, O.: The Asynchronous Partitioned Global Address Space Model. In: The First Workshop on Advances in Message Passing, Toronto, Canada, pp. 1–8 (2010)

    Google Scholar 

  20. Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O., Grove, D.: X10 language specification - Version 2.3. Technical report (2012)

    Google Scholar 

  21. Schulte, C., Tack, G., Lagerkvist, M.: Modeling and Programming with Gecode (2013)

    Google Scholar 

  22. Toulouse, M., Crainic, T., Gendreau, M.: Communication Issues in Designing Cooperative Multi-Thread Parallel Searches. In: Meta-Heuristics: Theory & Applications, pp. 501–522. Kluwer Academic Publishers, Norwell (1995)

    Google Scholar 

  23. Truchet, C., Richoux, F., Codognet, P.: Prediction of parallel speed-ups for las vegas algorithms. In: 43rd International Conference on Parallel Processing, ICPP 2013. IEEE Press (October 2013)

    Google Scholar 

  24. Verhoeven, M.G.A., Aarts, E.H.L.: Parallel local search. Journal of Heuristics 1(1), 43–65 (1995)

    Article  MATH  Google Scholar 

  25. Zhang, Q., Sun, J.: Iterated Local Search with Guided Mutation. In: IEEE International Conference on Evolutionary Computation, pp. 924–929. IEEE (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Munera, D., Diaz, D., Abreu, S., Codognet, P. (2014). A Parametric Framework for Cooperative Parallel Local Search. In: Blum, C., Ochoa, G. (eds) Evolutionary Computation in Combinatorial Optimisation. EvoCOP 2014. Lecture Notes in Computer Science, vol 8600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44320-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44320-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44319-4

  • Online ISBN: 978-3-662-44320-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics