[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Error-Tolerant Geometric Graph Similarity

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

Graph matching is the task of computing the similarity between two graphs. Error-tolerant graph matching is a type of graph matching, in which a similarity between two graphs is computed based on some tolerance value whereas within exact graph matching a strict one-to-one correspondence is required between two graphs. In this paper, we present an approach to error-tolerant graph similarity using geometric graphs. We define the vertex distance (dissimilarity) and edge distance between two graphs and combine them to compute graph distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armiti, A., Gertz, M.: Geometric graph matching and similarity: a probabilistic approach. In: SSDBM (2014)

    Google Scholar 

  2. Bunke, H.: Error-tolerant graph matching: a formal framework and algorithms. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SSPR/SPR 1998. LNCS, vol. 1451, pp. 1–14. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0033223

    Chapter  Google Scholar 

  3. Bunke, H., Allerman, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1, 245–253 (1983)

    Article  Google Scholar 

  4. Caelli, T., Kosinov, S.: Inexact graph matching using eigen-subspace projection clustering. Int. J. Pattern Recogn. Artif. Intell. 18(3), 329–355 (2004)

    Article  Google Scholar 

  5. Cheong, O., Gudmundsson, J., Kim, H.-S., Schymura, D., Stehn, F.: Measuring the similarity of geometric graphs. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 101–112. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02011-7_11

    Chapter  Google Scholar 

  6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004)

    Article  Google Scholar 

  7. Dwivedi, S.P., Singh, R.S.: Error-tolerant graph matching using homeomorphism. In: International Conference on Advances in Computing, Communication and Informatics (ICACCI), pp. 1762–1766 (2017)

    Google Scholar 

  8. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. 88, 1450001.1–1450001.40 (2014)

    MathSciNet  Google Scholar 

  9. Gartner, T.: Kernels for Structured Data. World Scientific, Singapore (2008)

    Book  Google Scholar 

  10. Hart, P.E., Nilson, N.J., Raphael, B.: A formal basis for heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

    Article  Google Scholar 

  11. Haussler, D.: Convolution kernels on discrete structures. Technical report, UCSC-CRL-99-10, University of California, Sant Cruz (1999)

    Google Scholar 

  12. Kuramochi, M., Karypis, G.: Discovering frequent geometric subgraphs. Inf. Syst. 32, 1101–1120 (2007)

    Article  Google Scholar 

  13. Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. J. Mach. Learn. Res. 6, 129–163 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the computation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 163–172. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_17

    Chapter  Google Scholar 

  15. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)

    Book  Google Scholar 

  16. Pinheiro, M.A., Kybic, J., Fua, P.: Geometric graph matching using Monte Carlo tree search. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2171–2185 (2017)

    Article  Google Scholar 

  17. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE Trans. Pattern Anal. Mach. Intell. 27, 365–378 (2005)

    Article  Google Scholar 

  18. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR /SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-89689-0_33

    Chapter  Google Scholar 

  19. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)

    Article  Google Scholar 

  20. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015)

    Article  Google Scholar 

  21. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–363 (1983)

    Article  Google Scholar 

  22. Schieber, T.A., Carpi, L., Diaz-Guilera, A., Pardalos, P.M., Masoller, C., Ravetti, M.G.: Quantification of network structural dissimilarities. Nature Commun. 8(13928), 1–10 (2017)

    Google Scholar 

  23. Shimada, Y., Hirata, Y., Ikeguchi, T., Aihara, K.: Graph distance for complex networks. Sci. Rep. 6(34944), 1–6 (2016)

    Google Scholar 

  24. Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.: Indexing hierarchical structures using graph spectra. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)

    Article  Google Scholar 

  25. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31988-7_16

    Chapter  MATH  Google Scholar 

  26. Tsai, W.H., Fu, K.S.: Error-correcting isomorphisms of attributed relational graphs for pattern analysis. IEEE Trans. Syst. Man Cybern. 9, 757–768 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shri Prakash Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dwivedi, S.P., Singh, R.S. (2018). Error-Tolerant Geometric Graph Similarity. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics