Abstract
The previous authors’ research showed that it is not only possible, but also profitable to estimate a potential growth of a level of knowledge that appears during an integration of ontologies. Such estimation can be done before the eventual integration procedure (or at least during such) which makes it even more valuable, because it allows to decide if a particular integration should be performed in the first place. Until now, authors of this paper prepared a formal framework that can be used to estimate the knowledge increase on the level of concepts, instances and relations between concepts. This paper is devoted to the level of relations between instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bartko, J.J.: The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 19(1), 3–11 (1966). https://doi.org/10.2466/pr0.1966.19.1.3
Burton-Jones, A., et al.: A semiotic metrics suite for assessing the quality of ontologies. Data Knowl. Eng. 55(1), 84–102 (2005)
Ceusters W., Smith B.: Towards a realism-based metric for quality assurance in ontology matching. In: Proceedings of the 2006 Conference on Formal Ontology in Information Systems: Proceedings of the Fourth International Conference (FOIS 2006), pp. 321–332. IOS Press (2006)
Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_19
Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. IJCAI 7, 348–353 (2007)
Jiang, Y., Wang, X., Zheng, H.T.: A semantic similarity measure based on information distance for ontology alignment. Inf. Sci. 278, 76–87 (2014)
Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the concept level. J. Intell. Fuzzy Syst. 32(2), 1161–1172 (2017). https://doi.org/10.3233/JIFS-169116
Kozierkiewicz-Hetmańska, A., Pietranik, M., Hnatkowska, B.: The knowledge increase estimation framework for ontology integration on the instance level. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 3–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_1
Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the relation level. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10448, pp. 44–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67074-4_5
Lozano-Tello, A., Gomez-Perez, A.: OntoMetric: a method to choose the appropriate ontology. J. Database Manag. 15(2), 1–18 (2004)
Ma, Y., Jin, B., Feng, Y.: Semantic oriented ontology cohesion metrics for ontology-based systems. J. Syst. Softw. 83(1), 143–152 (2010)
Maleszka, M., Nguyen, N.T.: A method for complex hierarchical data integration. Cybern. Syst. 42(5), 358–378 (2011)
Meilicke, Ch., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontology mappings. In: Proceedings of the 3rd International Conference on Ontology Matching, vol. 431. CEUR-WS. org (2008)
Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). https://doi.org/10.1007/978-1-84628-889-0
Pietranik, M., Nguyen, N.T.: A Multi-atrribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). https://doi.org/10.1016/j.neucom.2014.03.067
Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 448–453 (1995)
Tartir, S., et al.: OntoQA: metric-based ontology quality analysis. http://lsdis.cs.uga.edu/library/download/OntoQA.pdf (2005). Accessed 22 Oct 2017
Welty, C., Guarino, N.: Supporting ontological analysis of taxonomic relationships. Data Knowl. Eng. 39(1), 51–74 (2001)
Yu, J., Thom, J.A., Tam, A.: Requirements-oriented methodology for evaluating ontologies. Inf. Syst. 34(8), 766–791 (2009)
Acknowledgments
This research project was supported by grant No. 2017/01/X/ST6/00491 from the National Science Centre, Poland
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kozierkiewicz, A., Pietranik, M. (2018). The Knowledge Increase Estimation Framework for Integration of Ontology Instances’ Relations. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G. (eds) Databases and Information Systems. DB&IS 2018. Communications in Computer and Information Science, vol 838. Springer, Cham. https://doi.org/10.1007/978-3-319-97571-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-97571-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97570-2
Online ISBN: 978-3-319-97571-9
eBook Packages: Computer ScienceComputer Science (R0)