[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Knowledge Increase Estimation Framework for Integration of Ontology Instances’ Relations

  • Conference paper
  • First Online:
Databases and Information Systems (DB&IS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 838))

Included in the following conference series:

Abstract

The previous authors’ research showed that it is not only possible, but also profitable to estimate a potential growth of a level of knowledge that appears during an integration of ontologies. Such estimation can be done before the eventual integration procedure (or at least during such) which makes it even more valuable, because it allows to decide if a particular integration should be performed in the first place. Until now, authors of this paper prepared a formal framework that can be used to estimate the knowledge increase on the level of concepts, instances and relations between concepts. This paper is devoted to the level of relations between instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://goo.gl/iktxsK.

References

  1. Bartko, J.J.: The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 19(1), 3–11 (1966). https://doi.org/10.2466/pr0.1966.19.1.3

    Article  Google Scholar 

  2. Burton-Jones, A., et al.: A semiotic metrics suite for assessing the quality of ontologies. Data Knowl. Eng. 55(1), 84–102 (2005)

    Article  Google Scholar 

  3. Ceusters W., Smith B.: Towards a realism-based metric for quality assurance in ontology matching. In: Proceedings of the 2006 Conference on Formal Ontology in Information Systems: Proceedings of the Fourth International Conference (FOIS 2006), pp. 321–332. IOS Press (2006)

    Google Scholar 

  4. Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_19

    Chapter  Google Scholar 

  5. Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. IJCAI 7, 348–353 (2007)

    Google Scholar 

  6. Jiang, Y., Wang, X., Zheng, H.T.: A semantic similarity measure based on information distance for ontology alignment. Inf. Sci. 278, 76–87 (2014)

    Article  Google Scholar 

  7. Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the concept level. J. Intell. Fuzzy Syst. 32(2), 1161–1172 (2017). https://doi.org/10.3233/JIFS-169116

    Article  MATH  Google Scholar 

  8. Kozierkiewicz-Hetmańska, A., Pietranik, M., Hnatkowska, B.: The knowledge increase estimation framework for ontology integration on the instance level. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 3–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_1

    Chapter  Google Scholar 

  9. Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the relation level. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10448, pp. 44–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67074-4_5

    Chapter  Google Scholar 

  10. Lozano-Tello, A., Gomez-Perez, A.: OntoMetric: a method to choose the appropriate ontology. J. Database Manag. 15(2), 1–18 (2004)

    Article  Google Scholar 

  11. Ma, Y., Jin, B., Feng, Y.: Semantic oriented ontology cohesion metrics for ontology-based systems. J. Syst. Softw. 83(1), 143–152 (2010)

    Article  Google Scholar 

  12. Maleszka, M., Nguyen, N.T.: A method for complex hierarchical data integration. Cybern. Syst. 42(5), 358–378 (2011)

    Article  Google Scholar 

  13. Meilicke, Ch., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality of ontology mappings. In: Proceedings of the 3rd International Conference on Ontology Matching, vol. 431. CEUR-WS. org (2008)

    Google Scholar 

  14. Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). https://doi.org/10.1007/978-1-84628-889-0

    Book  MATH  Google Scholar 

  15. Pietranik, M., Nguyen, N.T.: A Multi-atrribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). https://doi.org/10.1016/j.neucom.2014.03.067

    Article  Google Scholar 

  16. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 448–453 (1995)

    Google Scholar 

  17. Tartir, S., et al.: OntoQA: metric-based ontology quality analysis. http://lsdis.cs.uga.edu/library/download/OntoQA.pdf (2005). Accessed 22 Oct 2017

  18. Welty, C., Guarino, N.: Supporting ontological analysis of taxonomic relationships. Data Knowl. Eng. 39(1), 51–74 (2001)

    Article  Google Scholar 

  19. Yu, J., Thom, J.A., Tam, A.: Requirements-oriented methodology for evaluating ontologies. Inf. Syst. 34(8), 766–791 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This research project was supported by grant No. 2017/01/X/ST6/00491 from the National Science Centre, Poland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrianna Kozierkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozierkiewicz, A., Pietranik, M. (2018). The Knowledge Increase Estimation Framework for Integration of Ontology Instances’ Relations. In: Lupeikiene, A., Vasilecas, O., Dzemyda, G. (eds) Databases and Information Systems. DB&IS 2018. Communications in Computer and Information Science, vol 838. Springer, Cham. https://doi.org/10.1007/978-3-319-97571-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97571-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97570-2

  • Online ISBN: 978-3-319-97571-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics