[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Knowledge Increase Estimation Framework for Ontology Integration on the Relation Level

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10448))

Included in the following conference series:

Abstract

The task of integration of sets of data or knowledge (regardless the choice of its representation) can be very daunting procedure, requiring a lot of computational resources and time. Authors claim that it is beneficial to develop a formal framework which could be used to estimate the profitability of the integration, ideally even before the integration even occurs. Therefore, a set of algorithms for such estimation of the increase of knowledge concerning relation level of ontology integration is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bobrowski, M., Marré, M., Yankelevich, D.: Measuring data quality. Universidad de Buenos Aires. Report. 1999:99–002 (1999)

    Google Scholar 

  2. Flahive, A., Taniar, D., Rahayu, W.: Ontology as a Service (OaaS): a case for sub-ontology merging on the cloud. J. Supercomput. 65, 185–216 (2013). doi:10.1007/s11227-011-0711-4

    Article  Google Scholar 

  3. Frank, A.U.: Data quality ontology: an ontology for imperfect knowledge. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 406–420. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74788-8_25

    Chapter  Google Scholar 

  4. Geisler, S., Weber, S., Quix, C.: An ontology-based data quality framework for data stream applications. In: 16th International Conference on Information Quality, pp. 145–159 (2011)

    Google Scholar 

  5. Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the concept level. J. Intell. Fuzzy Syst. 32(2), 1161–1172 (2017). doi:10.3233/JIFS-169116

    Article  MATH  Google Scholar 

  6. Kozierkiewicz-Hetmańska, A., Pietranik, M., Hnatkowska, B.: The knowledge increase estimation framework for ontology integration on the instance level. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS, vol. 10191, pp. 3–12. Springer, Cham (2017). doi:10.1007/978-3-319-54472-4_1

    Chapter  Google Scholar 

  7. Le, D.H., Dang, V.T.: Ontology-based disease similarity network for disease gene prediction Vietnam (2016). doi:10.1007/40595-016-0063-3

  8. Lozano-Tello, A., Gómez-Pérez, A.: Ontometric: a method to choose the appropriate ontology. J. Database Manage. 2(15), 1–18 (2004)

    Article  Google Scholar 

  9. Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). doi:10.1007/978-1-84628-889-0

    Book  MATH  Google Scholar 

  10. Pietranik, M., Nguyen, N.T.: A multi-atrribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). doi:10.1016/j.neucom.2014.03.067

    Article  Google Scholar 

  11. Porello, D., Endriss, U.: Ontology merging as social choice: judgment aggregation under the open world assumption. J. Logic Comput. 24(6), 1229–1249 (2014)

    Article  MathSciNet  Google Scholar 

  12. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS, vol. 2473, pp. 251–263. Springer, Heidelberg (2002). doi:10.1007/3-540-45810-7_24

    Chapter  MATH  Google Scholar 

  13. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: metric-based ontology quality analysis (2005). http://lsdis.cs.uga.edu/library/download/OntoQA.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrianna Kozierkiewicz-Hetmańska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kozierkiewicz-Hetmańska, A., Pietranik, M. (2017). The Knowledge Increase Estimation Framework for Ontology Integration on the Relation Level. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67074-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67073-7

  • Online ISBN: 978-3-319-67074-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics