Abstract
The task of integration of sets of data or knowledge (regardless the choice of its representation) can be very daunting procedure, requiring a lot of computational resources and time. Authors claim that it is beneficial to develop a formal framework which could be used to estimate the profitability of the integration, ideally even before the integration even occurs. Therefore, a set of algorithms for such estimation of the increase of knowledge concerning relation level of ontology integration is proposed.
Similar content being viewed by others
References
Bobrowski, M., Marré, M., Yankelevich, D.: Measuring data quality. Universidad de Buenos Aires. Report. 1999:99–002 (1999)
Flahive, A., Taniar, D., Rahayu, W.: Ontology as a Service (OaaS): a case for sub-ontology merging on the cloud. J. Supercomput. 65, 185–216 (2013). doi:10.1007/s11227-011-0711-4
Frank, A.U.: Data quality ontology: an ontology for imperfect knowledge. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 406–420. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74788-8_25
Geisler, S., Weber, S., Quix, C.: An ontology-based data quality framework for data stream applications. In: 16th International Conference on Information Quality, pp. 145–159 (2011)
Kozierkiewicz-Hetmańska, A., Pietranik, M.: The knowledge increase estimation framework for ontology integration on the concept level. J. Intell. Fuzzy Syst. 32(2), 1161–1172 (2017). doi:10.3233/JIFS-169116
Kozierkiewicz-Hetmańska, A., Pietranik, M., Hnatkowska, B.: The knowledge increase estimation framework for ontology integration on the instance level. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS, vol. 10191, pp. 3–12. Springer, Cham (2017). doi:10.1007/978-3-319-54472-4_1
Le, D.H., Dang, V.T.: Ontology-based disease similarity network for disease gene prediction Vietnam (2016). doi:10.1007/40595-016-0063-3
Lozano-Tello, A., Gómez-Pérez, A.: Ontometric: a method to choose the appropriate ontology. J. Database Manage. 2(15), 1–18 (2004)
Nguyen, N.T.: Advanced Methods for Inconsistent Knowledge Management. Springer, London (2008). doi:10.1007/978-1-84628-889-0
Pietranik, M., Nguyen, N.T.: A multi-atrribute based framework for ontology aligning. Neurocomputing 146, 276–290 (2014). doi:10.1016/j.neucom.2014.03.067
Porello, D., Endriss, U.: Ontology merging as social choice: judgment aggregation under the open world assumption. J. Logic Comput. 24(6), 1229–1249 (2014)
Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS, vol. 2473, pp. 251–263. Springer, Heidelberg (2002). doi:10.1007/3-540-45810-7_24
Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: metric-based ontology quality analysis (2005). http://lsdis.cs.uga.edu/library/download/OntoQA.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kozierkiewicz-Hetmańska, A., Pietranik, M. (2017). The Knowledge Increase Estimation Framework for Ontology Integration on the Relation Level. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10448. Springer, Cham. https://doi.org/10.1007/978-3-319-67074-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-67074-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67073-7
Online ISBN: 978-3-319-67074-4
eBook Packages: Computer ScienceComputer Science (R0)