Abstract
Four-legged mammals are capable of showing a great variety of movement patterns, ranging from a simple walk to more complex movement such as trots and gallops. Imbuing this diversity to quadruped robots is of interest in order to improve both mobility and reach. Within the field of Evolutionary Robotics, Quality Diversity techniques have shown a remarkable ability to produce not only effective, but also highly diverse solutions. When applying this approach to four-legged robots an initial problem is to create viable movement patterns that do not fall. This difficulty stems from the challenging fitness gradient due to the mammalian morphology. In this paper we propose a solution to overcome this problem by implementing incremental evolution within the Quality Diversity framework. This allows us to evolve controllers that become more complex while at the same time utilizing the diversity produced by Quality Diversity. We show that our approach is able to generate high fitness solutions early in the search process, keep these solutions and perform a more open-ended search towards the end of evolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Source code: https://folk.uio.no/jorgehn/dyret_map_gaits-0.1.0.zip.
- 5.
For further details see the source code.
- 6.
For videos see: https://folk.uio.no/jorgehn/map_gaits/.
References
Wettergreen, D., Thorpe, C.: Gait generation for legged robots. In: IEEE International Conference on Intelligent Robots and Systems (1992)
Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. Int. J. Robot. Res. 12(6), 535–559 (1993)
Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA2000, vol. 3, pp. 3040–3045. IEEE (2000)
Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)
Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)
Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE, pp. 329–336 (2008)
Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)
Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015)
Cully, A., Mouret, J.B.: Behavioral repertoire learning in robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 175–182. ACM (2013)
Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: EvoRBC: evolutionary repertoire-based control for robots with arbitrary locomotion complexity. In: Proceedings of the 18th Annual Conference on Genetic and Evolutionary Computation. ACM (2016)
Cully, A., Mouret, J.B.: Evolving a behavioral repertoire for a walking robot. Evol. Comput. 24(1), 59–88 (2016)
Van de Panne, M., Lamouret, A.: Guided optimization for balanced locomotion. In: Terzopoulos, D., Thalmann, D. (eds.) Computer Animation and Simulation 1995, pp. 165–177. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-9435-5_13
de Santos, P.G., Garcia, E., Estremera, J.: Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London (2007). https://doi.org/10.1007/1-84628-307-8
Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization. In: Proceedings of the 20th European Conference on Artificial Life, pp. 890–897 (2011)
Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5(3–4), 317–342 (1997)
Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)
Brooks, R.A.: A robot that walks; emergent behaviors from a carefully evolved network. Neural Comput. 1(2), 253–262 (1989)
Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Robot. Autonom. Syst. 19(1), 67–83 (1996)
Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control in a quadruped robot. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 6, pp. 637–641. IEEE (2000)
Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2764–2771. IEEE (2009)
Lee, S., Yosinski, J., Glette, K., Lipson, H., Clune, J.: Evolving gaits for physical robots with the HyperNEAT generative encoding: the benefits of simulation. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 540–549. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_54
Zykov, V., Bongard, J., Lipson, H.: Evolving dynamic gaits on a physical robot. In: Proceedings of Genetic and Evolutionary Computation Conference, Late Breaking Paper, GECCO, vol. 4 (2004)
Nygaard, T.F., Tørresen, J., Glette, K.: Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016)
Tarapore, D., Clune, J., Cully, A., Mouret, J.B.: How do different encodings influence the performance of the MAP-Elites algorithm? In: Genetic and Evolutionary Computation Conference (2016)
Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1161–1168. IEEE (2009)
Filliat, D., Kodjabachian, J., Meyer, J.A., et al.: Incremental evolution of neural controllers for navigation in a 6-legged robot. In: Proceedings of the Fourth International Symposium on Artificial Life and Robots, pp. 753–760 (1999)
Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P.: Evolving soccer keepaway players through task decomposition. Mach. Learn. 59(1), 5–30 (2005)
Christensen, A.L., Dorigo, M.: Incremental evolution of robot controllers for a highly integrated task. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 473–484. Springer, Heidelberg (2006). https://doi.org/10.1007/11840541_39
Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)
Bongard, J.: Morphological and environmental scaffolding synergize when evolving robot controllers: artificial life/robotics/evolvable hardware. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 179–186. ACM (2011)
Mouret, J.-B., Doncieux, S.: Incremental evolution of animats’ behaviors as a multi-objective optimization. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 210–219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69134-1_21
Auerbach, J.E., Iacca, G., Floreano, D.: Gaining insight into quality diversity. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1061–1064. ACM (2016)
Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)
Mouret, J.B., Doncieux, S.: SFERESv2: evolvin’ in the multi-core world. In: Proceedings of Congress on Evolutionary Computation (CEC), pp. 4079–4086 (2010)
Acknowledgments
Supported by The Research Council of Norway as a part of the Engineering Predictability with Embodied Cognition (EPEC) project, under grant agreement 240862.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Nordmoen, J., Ellefsen, K.O., Glette, K. (2018). Combining MAP-Elites and Incremental Evolution to Generate Gaits for a Mammalian Quadruped Robot. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-77538-8_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77537-1
Online ISBN: 978-3-319-77538-8
eBook Packages: Computer ScienceComputer Science (R0)