[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Combining MAP-Elites and Incremental Evolution to Generate Gaits for a Mammalian Quadruped Robot

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Four-legged mammals are capable of showing a great variety of movement patterns, ranging from a simple walk to more complex movement such as trots and gallops. Imbuing this diversity to quadruped robots is of interest in order to improve both mobility and reach. Within the field of Evolutionary Robotics, Quality Diversity techniques have shown a remarkable ability to produce not only effective, but also highly diverse solutions. When applying this approach to four-legged robots an initial problem is to create viable movement patterns that do not fall. This difficulty stems from the challenging fitness gradient due to the mammalian morphology. In this paper we propose a solution to overcome this problem by implementing incremental evolution within the Quality Diversity framework. This allows us to evolve controllers that become more complex while at the same time utilizing the diversity produced by Quality Diversity. We show that our approach is able to generate high fitness solutions early in the search process, keep these solutions and perform a more open-ended search towards the end of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://gazebosim.org/.

  2. 2.

    http://www.ode.org/.

  3. 3.

    http://ros.org.

  4. 4.

    Source code: https://folk.uio.no/jorgehn/dyret_map_gaits-0.1.0.zip.

  5. 5.

    For further details see the source code.

  6. 6.

    For videos see: https://folk.uio.no/jorgehn/map_gaits/.

References

  1. Wettergreen, D., Thorpe, C.: Gait generation for legged robots. In: IEEE International Conference on Intelligent Robots and Systems (1992)

    Google Scholar 

  2. Bares, J.E., Whittaker, W.L.: Configuration of autonomous walkers for extreme terrain. Int. J. Robot. Res. 12(6), 535–559 (1993)

    Article  Google Scholar 

  3. Hornby, G.S., Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA2000, vol. 3, pp. 3040–3045. IEEE (2000)

    Google Scholar 

  4. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)

    Article  Google Scholar 

  5. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)

    Article  Google Scholar 

  6. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE, pp. 329–336 (2008)

    Google Scholar 

  7. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  8. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015)

    Article  Google Scholar 

  9. Cully, A., Mouret, J.B.: Behavioral repertoire learning in robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 175–182. ACM (2013)

    Google Scholar 

  10. Duarte, M., Gomes, J., Oliveira, S.M., Christensen, A.L.: EvoRBC: evolutionary repertoire-based control for robots with arbitrary locomotion complexity. In: Proceedings of the 18th Annual Conference on Genetic and Evolutionary Computation. ACM (2016)

    Google Scholar 

  11. Cully, A., Mouret, J.B.: Evolving a behavioral repertoire for a walking robot. Evol. Comput. 24(1), 59–88 (2016)

    Article  Google Scholar 

  12. Van de Panne, M., Lamouret, A.: Guided optimization for balanced locomotion. In: Terzopoulos, D., Thalmann, D. (eds.) Computer Animation and Simulation 1995, pp. 165–177. Springer, Vienna (1995). https://doi.org/10.1007/978-3-7091-9435-5_13

    Google Scholar 

  13. de Santos, P.G., Garcia, E., Estremera, J.: Quadrupedal locomotion: an introduction to the control of four-legged robots. Springer, London (2007). https://doi.org/10.1007/1-84628-307-8

    MATH  Google Scholar 

  14. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving robot gaits in hardware: the HyperNEAT generative encoding vs. parameter optimization. In: Proceedings of the 20th European Conference on Artificial Life, pp. 890–897 (2011)

    Google Scholar 

  15. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adapt. Behav. 5(3–4), 317–342 (1997)

    Article  Google Scholar 

  16. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

    Article  Google Scholar 

  17. Brooks, R.A.: A robot that walks; emergent behaviors from a carefully evolved network. Neural Comput. 1(2), 253–262 (1989)

    Article  Google Scholar 

  18. Matarić, M., Cliff, D.: Challenges in evolving controllers for physical robots. Robot. Autonom. Syst. 19(1), 67–83 (1996)

    Article  Google Scholar 

  19. Billard, A., Ijspeert, A.J.: Biologically inspired neural controllers for motor control in a quadruped robot. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, vol. 6, pp. 637–641. IEEE (2000)

    Google Scholar 

  20. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2764–2771. IEEE (2009)

    Google Scholar 

  21. Lee, S., Yosinski, J., Glette, K., Lipson, H., Clune, J.: Evolving gaits for physical robots with the HyperNEAT generative encoding: the benefits of simulation. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 540–549. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9_54

    Chapter  Google Scholar 

  22. Zykov, V., Bongard, J., Lipson, H.: Evolving dynamic gaits on a physical robot. In: Proceedings of Genetic and Evolutionary Computation Conference, Late Breaking Paper, GECCO, vol. 4 (2004)

    Google Scholar 

  23. Nygaard, T.F., Tørresen, J., Glette, K.: Multi-objective evolution of fast and stable gaits on a physical quadruped robotic platform. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016)

    Google Scholar 

  24. Tarapore, D., Clune, J., Cully, A., Mouret, J.B.: How do different encodings influence the performance of the MAP-Elites algorithm? In: Genetic and Evolutionary Computation Conference (2016)

    Google Scholar 

  25. Mouret, J.B., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1161–1168. IEEE (2009)

    Google Scholar 

  26. Filliat, D., Kodjabachian, J., Meyer, J.A., et al.: Incremental evolution of neural controllers for navigation in a 6-legged robot. In: Proceedings of the Fourth International Symposium on Artificial Life and Robots, pp. 753–760 (1999)

    Google Scholar 

  27. Whiteson, S., Kohl, N., Miikkulainen, R., Stone, P.: Evolving soccer keepaway players through task decomposition. Mach. Learn. 59(1), 5–30 (2005)

    Article  MATH  Google Scholar 

  28. Christensen, A.L., Dorigo, M.: Incremental evolution of robot controllers for a highly integrated task. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 473–484. Springer, Heidelberg (2006). https://doi.org/10.1007/11840541_39

    Chapter  Google Scholar 

  29. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior. Proc. Nat. Acad. Sci. 108(4), 1234–1239 (2011)

    Article  Google Scholar 

  30. Bongard, J.: Morphological and environmental scaffolding synergize when evolving robot controllers: artificial life/robotics/evolvable hardware. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 179–186. ACM (2011)

    Google Scholar 

  31. Mouret, J.-B., Doncieux, S.: Incremental evolution of animats’ behaviors as a multi-objective optimization. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 210–219. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69134-1_21

    Chapter  Google Scholar 

  32. Auerbach, J.E., Iacca, G., Floreano, D.: Gaining insight into quality diversity. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1061–1064. ACM (2016)

    Google Scholar 

  33. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 211–218. ACM (2011)

    Google Scholar 

  34. Mouret, J.B., Doncieux, S.: SFERESv2: evolvin’ in the multi-core world. In: Proceedings of Congress on Evolutionary Computation (CEC), pp. 4079–4086 (2010)

    Google Scholar 

Download references

Acknowledgments

Supported by The Research Council of Norway as a part of the Engineering Predictability with Embodied Cognition (EPEC) project, under grant agreement 240862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Nordmoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nordmoen, J., Ellefsen, K.O., Glette, K. (2018). Combining MAP-Elites and Incremental Evolution to Generate Gaits for a Mammalian Quadruped Robot. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics