[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Incremental Evolution of Animats’ Behaviors as a Multi-objective Optimization

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

Evolutionary algorithms have been successfully used to create controllers for many animats. However, intuitive fitness functions like the survival time of the animat, often do not lead to interesting results because of the bootstrap problem, arguably one of the main challenges in evolutionary robotics: if all the individuals perform equally poorly, the evolutionary process cannot start. To overcome this problem, many authors defined ordered sub-tasks to bootstrap the process, leading to an incremental evolution scheme. Published methods require a deep knowledge of the underlying structure of the analyzed task, which is often not available to the experimenter. In this paper, we propose a new incremental scheme based on multi-objective evolution. This process is able to automatically switch between each sub-task resolution and does not require to order them. The proposed method has been successfully tested on the evolution of a neuro-controller for a complex-light seeking simulated robot, involving 8 sub-tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meyer, J.A.: From natural to artificial life: Biomimetic mechanisms in animat design. Robotics and Autonomous Systems 22(3-21) (1997)

    Google Scholar 

  2. Meyer, J.A., Husbands, P., Harvey, I.: Evolutionary robotics: a survey of applications and problems. In: Husbands, P., Meyer, J.A. (eds.) Proceedings of The First European Workshop on Evolutionary Robotics - EvoRobot 1998. Springer, Heidelberg (1998)

    Google Scholar 

  3. Kodjabachian, J., Meyer, J.A.: Evolution and development of neural networks controlling locomotion, gradient-following, and obstacle-avoidance in artificial insects. IEEE Transactions on Neural Networks 9, 796–812 (1997)

    Article  Google Scholar 

  4. Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental robot shaping. Connection Science Journal 10(384), 341–360 (1998)

    Article  Google Scholar 

  5. Harvey, I., Husbands, P., Cliff, D.: Seeing the light: artificial evolution; real vision. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S. (eds.) From Animals to Animats 3, Proceedings of the third international conference on Simulation of Adaptive Behavior. MIT Press/Bradford Books (1994)

    Google Scholar 

  6. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adaptive Behavior 5, 317–342 (1997)

    Article  Google Scholar 

  7. Urzelai, J., Floreano, D.: Incremental Evolution with Minimal Resources. In: Proceedings of IKW 1999 (1999)

    Google Scholar 

  8. Deb, K.: Multi-objectives optimization using evolutionnary algorithms. Wiley, Chichester (2001)

    Google Scholar 

  9. Winkeler, J., Manjunath, B.: Incremental evolution in genetic programming. Genetic Programming, 403–411 (1998)

    Google Scholar 

  10. Walker, M.: Comparing the performance of incremental evolution to direct evolution. In: 2nd International Conference on Autonomous Robots and Agents (2004)

    Google Scholar 

  11. Parker, G.: The Incremental Evolution of Gaits for Hexapod Robots. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 1114–1121 (2001)

    Google Scholar 

  12. Mouret, J.B., Doncieux, S., Meyer, J.A.: Incremental evolution of target-following neuro-controllers for flapping-wing animats. In: From Animals to Animats: Proceedings of the 9th International Conference on the Simulation of Adaptive Behavior (SAB), pp. 606–618 (2006)

    Google Scholar 

  13. Larsen, T., Hansen, S.: Evolving composite robot behaviour-a modular architecture. In: Proceedings of the Fifth International Workshop. Robot Motion and Control 2005, pp. 271–276 (2005)

    Google Scholar 

  14. De Nardi, R., Togelius, J., Holland, O., Lucas, S.: Evolution of Neural Networks for Helicopter Control: Why Modularity Matters. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 1799–1806 (2006)

    Google Scholar 

  15. Nolfi, S., Paris, D.: Evolving non-Trivial Behaviors on Real Robots: an Autonomous Robot that Picks up Objects. In: Topics in Artificial Intelligence: Proceedings of 4th Conference of the Italian Association for Artificial Intelligence, AI* IA 1995, Florence, Italy, October 11-13 (1995)

    Google Scholar 

  16. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evolutionary Computatition 13(4), 501–525 (2005)

    Article  Google Scholar 

  17. Doncieux, S., Meyer, J.A.: Evolving PID-like neurocontrollers for non-linear control problems. International Journal of Control and Intelligent Systems (IJCIS) 33(1), 55–62 (2005); Special Issue on nonlinear adaptive PID control

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mouret, JB., Doncieux, S. (2008). Incremental Evolution of Animats’ Behaviors as a Multi-objective Optimization. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics