[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classification of Osteoporotic Vertebral Fractures Using Shape and Appearance Modelling

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications in Musculoskeletal Imaging (MSKI 2017)

Abstract

Osteoporotic vertebral fractures (VFs) are under-diagnosed, creating an opportunity for computer-aided, opportunistic fracture identification in clinical images. VF diagnosis and grading in clinical practice involves comparisons of vertebral body heights. However, machine vision systems can provide a high-resolution segmentation of the vertebrae and fully characterise their shape and appearance, potentially allowing improved diagnostic accuracy. We compare approaches based on vertebral heights to shape/appearance modelling combined with k-nearest neighbours and random forest (RF) classifiers, on both dual-energy X-ray absorptiometry images and computed tomography image volumes. We demonstrate that the combination of RF classifiers and appearance modelling, which is novel in this application, results in a significant (up to 60% reduction in false positive rate at 80% sensitivity) improvement in diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 29.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 37.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rachner, T., Khosla, S., Hofbauer, L.: Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011)

    Article  Google Scholar 

  2. Adams, J.: Opportunistic identification of vertebral fractures. J. Clin. Densitom. 19(1), 54–62 (2016)

    Article  Google Scholar 

  3. Operational Information for Commissioning: Diagnostic imaging dataset statistical release. Technical report, NHS, UK (2016). http://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2015/08/Provisional-Monthly-Diagnostic-Imaging-Dataset-Statistics-2016-05-19.pdf

  4. Williams, A.L., Al-Busaidi, A., Sparrow, P.J., Adams, J.E., Whitehouse, R.W.: Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur. J. Radiol. 69(1), 179–183 (2009)

    Article  Google Scholar 

  5. Kariki, E., Bromiley, P., Cootes, T., Adams, J.: Opportunistic identification of vertebral fractures on computed radiography: need for improvement. Osteoporos. Int. 27(S2), 621 (2016)

    Google Scholar 

  6. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Understand. 61(1), 38–59 (1995)

    Article  Google Scholar 

  7. Brett, A., Miller, C., Hayes, C., Krasnow, J., Ozanian, T., Abrams, K., Block, J., van Kuijk, C.: Development of a clinical workflow tool to enhance the detection of vertebral fractures. Spine 34(22), 2437–2443 (2009)

    Article  Google Scholar 

  8. Roberts, M., Cootes, T., Adams, J.: Vertebral morphometry: semiautomatic determination of detailed shape from dual-energy X-ray absorptiometry images using active appearance models. Invest. Radiol. 41(12), 849–859 (2006)

    Article  Google Scholar 

  9. Roberts, M.G., Cootes, T.F., Adams, J.E.: Automatic location of vertebrae on DXA images using random forest regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 361–368. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_45

    Chapter  Google Scholar 

  10. Lindner, C., Bromiley, P., Ionita, M., Cootes, T.: Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1862–1874 (2015)

    Article  Google Scholar 

  11. Bromiley, P., Adams, J., Cootes, T.: Localization of vertebrae on DXA VFA images using constrained local models with random forest regression voting. In: Proceedings of 20th International Bone Densitometry Workshop - IBDW 2014 (2014). J. Orthop. Translat., vol. 2, pp. 227–228

    Article  Google Scholar 

  12. Bromiley, P., Adams, J., Cootes, T.: Localisation of vertebrae on DXA images using constrained local models with random forest regression voting. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 159–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14148-0_14

    Chapter  Google Scholar 

  13. Bromiley, P.A., Adams, J.E., Cootes, T.F.: Automatic localisation of vertebrae in DXA images using random forest regression voting. In: Vrtovec, T., Yao, J., Glocker, B., Klinder, T., Frangi, A., Zheng, G., Li, S. (eds.) CSI 2015. LNCS, vol. 9402, pp. 38–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41827-8_4

    Chapter  Google Scholar 

  14. Bromiley, P.A., Kariki, E.P., Adams, J.E., Cootes, T.F.: Fully automatic localisation of vertebrae in CT images using random forest regression voting. In: Yao, J., Vrtovec, T., Zheng, G., Frangi, A., Glocker, B., Li, S. (eds.) CSI 2016. LNCS, vol. 10182, pp. 51–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55050-3_5

    Chapter  Google Scholar 

  15. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  16. Griffith, J.: Identifying osteoporotic vertebral fracture. Quant. Imaging Med. Surg. 5(4), 592–602 (2015)

    Google Scholar 

  17. Jensen, G., McNair, P., Boesen, J., Hegedus, V.: Validity in diagnosing osteoporosis. Observer variation in interpreting spinal radiographs. Eur. J. Radiol. 4(1), 1–3 (1984)

    Google Scholar 

  18. Genant, H., Wu, C., Kuijk, C., Nevitt, M.: Vertebral fracture assessment using a semi-quantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)

    Article  Google Scholar 

  19. Jiang, G.: Diagnosis of vertebral fracture using an ABQ method. Osteoporos. Rev. 18(3), 14–18 (2010)

    Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  21. McCloskey, E., Selby, P., de Takats, D., Bernard, J., Davies, M., Robinson, J., Francis, R., Adams, J., Pande, K., Beneton, M., Jalava, T., Loyttyniemi, E., Kanis, J.: Effects of clodronate on vertebral fracture risk in osteoporosis: a 1-year interim analysis. Bone 28(3), 310–315 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This publication presents independent research supported by the Health Innovation Challenge Fund (grant no. HICF-R7-414/WT100936), a parallel funding partnership between the Department of Health and Wellcome Trust, and by the NIHR Invention for Innovation (i4i) programme (grant no. II-LB_0216-20009). The views expressed are those of the authors and not necessarily those of the NHS, NIHR, the Department of Health or Wellcome Trust. The authors acknowledge the invaluable assistance of Mrs Chrissie Alsop, Mr Stephen Capener, Mrs Imelda Hodgkinson, Mr Michael Machin, and Mrs Sue Roberts, who performed the manual annotations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bromiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bromiley, P.A., Kariki, E.P., Adams, J.E., Cootes, T.F. (2018). Classification of Osteoporotic Vertebral Fractures Using Shape and Appearance Modelling. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds) Computational Methods and Clinical Applications in Musculoskeletal Imaging. MSKI 2017. Lecture Notes in Computer Science(), vol 10734. Springer, Cham. https://doi.org/10.1007/978-3-319-74113-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74113-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74112-3

  • Online ISBN: 978-3-319-74113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics