[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2015)

Abstract

We describe a method for automatic detection and localisation of vertebrae in clinical images that was designed to avoid making a priori assumptions of how many vertebrae are visible. Multiple random forest regressors were trained to identify vertebral end-plates, providing estimates of both the location and pose of the vertebrae. The highest-weighted responses from each model were combined using a Hough-style voting array. A graphical approach was then used to extract contiguous sets of detections representing neighbouring vertebrae, by finding a path linking modes of high weight, subject to pose constraints. The method was evaluated on 320 lateral dual-energy X-ray absorptiometry spinal images with a high prevalence of osteoporotic vertebral fractures, and detected 92 % of the vertebrae between T7 and L4 with a mean localisation error of 2.36 mm. When used to initialise a constrained local model segmentation of the vertebrae, the method increased the incidence of fit failures from 1.5 to 2.1 % compared to manual initialisation, and produced no difference in fracture classification using a simple classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 29.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 37.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This was performed as a separate step for implementation reasons. We have not yet investigated the possibility of performing the search for all RF regressors using a combined array.

  2. 2.

    44 patients from a previous study [15]; 80 female subjects in an epidemiological study of a UK cohort born in 1946; 196 females attending a local clinic for DXA BMD measurement, for whom the referring physician had requested VFA (approved by the local ethics committee).

References

  1. Rachner, T., Khosla, S., Hofbauer, L.: Osteoporosis: now and the future. Lancet 377(9773), 1276–1287 (2011)

    Article  Google Scholar 

  2. Cummings, S., Melton, L.: Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319), 1761–1767 (2002)

    Article  Google Scholar 

  3. Delmas, P., Langerijt, L., Watts, N., Eastell, R., Genant, H., Grauer, A., Cahall, D.: Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J. Bone Miner. Res. 20(4), 557–563 (2005)

    Article  Google Scholar 

  4. de Bruijne, M., Lund, M., Tankó, L., Pettersen, P., Nielsen, M.: Quantitative vertebral morphometry using neighbour-conditional shape models. Med. Image Anal. 11(5), 503–512 (2007)

    Article  Google Scholar 

  5. Roberts, M.G., Cootes, T.F., Adams, J.E.: Automatic location of vertebrae on DXA images using random forest regression. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 361–368. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bromiley, P., Adams, J., Cootes, T.: Localisation of vertebrae on DXA images using constrained local models with random forest regression voting. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 159–172. Springer, Switzerland (2015)

    Google Scholar 

  7. Lindner, C., Bromiley, P., Ionita, M., Cootes, T.: Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1862–1874 (2015)

    Article  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  10. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3), 471–482 (2009)

    Article  Google Scholar 

  12. Glocker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A.: Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 262–270. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Gall, J., Lempitsky, V.: Class-specific Hough forests for object detection. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition - CVpPR 2009, pp. 1022–1029. IEEE (2009)

    Google Scholar 

  14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - CVpPR 2001, vol. 1, pp. 511–518. IEEE (2001)

    Google Scholar 

  15. McCloskey, E., Selby, P., de Takats, D., Bernard, J., Davies, M., Robinson, J., Francis, R., Adams, J., Pande, K., Beneton, M., Jalava, T., Löyttyniemi, E., Kanis, J.: Effects of clodronate on vertebral fracture risk in osteoporosis: a 1-year interim analysis. Bone 28(3), 310–315 (2001)

    Article  Google Scholar 

  16. Genant, H., Wu, C., van Kuijk, C., Nevitt, M.: Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 8(9), 1137–1148 (1993)

    Article  Google Scholar 

  17. Leidig-Bruckner, G., Minne, H.: The spine deformity index (SDI): a new approach to quantifying vertebral crush fractures in patients with osteoporosis. In: Vertebral Fracture in Osteoporosis, pp. 235–252. Osteoporosis Research Group, University of California (1995)

    Google Scholar 

  18. Bromiley, P., Schunke, A., Ragheb, H., Thacker, N., Tautz, D.: Semi-automatic landmark point annotation for geometric morphometrics. Front. Zool. 11(61), 1–21 (2014)

    Google Scholar 

Download references

Acknowledgements

This publication presents independent research supported by the Health Innovation Challenge Fund (grant no. HICF-R7-414/WT100936), a parallel funding partnership between the Department of Health and Wellcome Trust. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health or Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bromiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bromiley, P.A., Adams, J.E., Cootes, T.F. (2016). Automatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting. In: Vrtovec, T., et al. Computational Methods and Clinical Applications for Spine Imaging. CSI 2015. Lecture Notes in Computer Science(), vol 9402. Springer, Cham. https://doi.org/10.1007/978-3-319-41827-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41827-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41826-1

  • Online ISBN: 978-3-319-41827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics