Abstract
CSI is a strong automated confluence prover for rewrite systems which has been in development since 2010. In this paper we report on recent extensions that make CSI more powerful, secure, and useful. These extensions include improved confluence criteria but also support for uniqueness of normal forms. Most of the implemented techniques produce machine-readable proof output that can be independently verified by an external tool, thus increasing the trust in CSI. We also report on CSI\(\mathbf {\hat{~}}\)oho, a tool built on the same framework and similar ideas as CSI that automatically checks confluence of higher-order rewrite systems.
This research is supported by FWF (Austrian Science Fund) project P27528.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available from http://coco.nue.riec.tohoku.ac.jp/2013, http://coco.nue.riec.tohoku.ac.jp/2014, http://coco.nue.riec.tohoku.ac.jp/2015, http://coco.nue.riec.tohoku.ac.jp/2016, under Entrants.
- 2.
- 3.
- 4.
In fact, CSI uses a modified definition of \(\mathcal {S}^e\) that avoids adding extended rules for rules where the same linear variable appears as an argument of the two top-flattenings of the left-hand and right-hand sides of the rule, using the same AC symbol. In the example, this applies to the first two rules. We still have \({\rightarrow _{\mathcal {S}/\mathsf {AC}}} = {\rightarrow _{\mathcal {S}^e,\mathsf {AC}}} \cdot \sim _\mathsf {AC}\).
- 5.
This can be shown using tree automata techniques [11].
- 6.
A term is a pattern if free variables only have distinct bound variables as arguments.
- 7.
A development step contracts multiple, non-overlapping but possibly nested redexes at once.
- 8.
IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/ceta.
- 9.
Full details are available from CSI’s website.
References
Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition 2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 101–104. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_5
Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence of non-terminating term rewriting systems. LMCS 8(1: 31), 1–29 (2012). doi:10.2168/LMCS-8(1:31)2012
Aoto, T., Toyama, Y.: Ground confluence prover based on rewriting induction. In: Proceedings of 1st FSCD. LIPIcs, vol. 52, pp. 33: 1–33: 12 (2016). doi:10.4230/LIPIcs.FSCD.2016.33
Aoto, T., Toyama, Y., Uchida, K.: Proving confluence of term rewriting systems via persistency and decreasing diagrams. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 46–60. Springer, Cham (2014). doi:10.1007/978-3-319-08918-8_4
Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02348-4_7
Appel, C., van Oostrom, V., Simonsen, J.G.: Higher-order (non-)modularity. In: Proceedings of 21st RTA. LIPIcs, vol. 6, pp. 17–32 (2010). doi:10.4230/LIPIcs.RTA.2010.17
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, New York (1998)
Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time. In: Proceedings of 23rd RTA. LIPIcs, vol. 15, pp. 165–175 (2012). doi:10.4230/LIPIcs.RTA.2012.165
Felgenhauer, B.: Efficiently deciding uniqueness of normal forms and unique normalization for ground TRSs. In: Proceedings of 5th IWC, pp. 16–20 (2016)
Felgenhauer, B., Middeldorp, A., Zankl, H., Oostrom, V.O.: Layer systems for proving confluence. ACM TOCL 16(2: 14), 1–32 (2015). doi:10.1145/2710017
Felgenhauer, B., Thiemann, R.: Reachability analysis with state-compatible automata. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 347–359. Springer, Cham (2014). doi:10.1007/978-3-319-04921-2_28
Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. JACM 27(4), 797–821 (1980). doi:10.23638/LMCS-13(2:4)2017
Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15(4), 1155–1194 (1986). doi:10.1137/0215084
Kahrs, S., Smith, C.: Non-\(\omega \)-overlapping TRSs are UN. In: Proceedings of 1st FSCD. LIPIcs, vol. 52, pp. 22: 1–22: 17 (2016). doi:10.4230/LIPIcs.FSCD.2016.22
Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termination. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 258–273. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_21
Klop, J.: Combinatory reduction systems. Ph.D. thesis, Utrecht University (1980)
Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)
Kop, C.: Higher order termination. Ph.D. thesis, Vrije Universiteit, Amsterdam (2012)
Kusakari, K., Isogai, Y., Sakai, M., Blanqui, F.: Static dependency pair method based on strong computability for higher-order rewrite systems. IEICE TIS 92–D(10), 2007–2015 (2009)
Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. TCS 192(1), 3–29 (1998). doi:10.1016/S0304-3975(97)00143-6
Miller, D.: A logic programming language with lambda-abstraction, function variables, and simple unification. JLP 1(4), 497–536 (1991). doi:10.1093/logcom/1.4.497
Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic confluence analysis of rewrite systems by redundant rules. In: Proceedings of 26th RTA. LIPIcs, vol. 36, pp. 257–268 (2015). doi:10.4230/LIPIcs.RTA.2015.257
Nagele, J., Felgenhauer, B., Zankl, H.: Certifying confluence proofs via relative termination and rule labeling. LMCS (to appear) (2017)
Nagele, J., Middeldorp, A.: Certification of classical confluence results for left-linear term rewrite systems. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 290–306. Springer, Cham (2016). doi:10.1007/978-3-319-43144-4_18
Nagele, J., Thiemann, R.: Certification of confluence proofs using CeTA. In: Proceedings of 3rd IWC, pp. 19–23 (2014)
Nelson, G., Oppen, D.: Fast decision procedures based on congruence closure. JACM 27(2), 356–364 (1980). doi:10.1145/322186.322198
Nipkow, T.: Higher-order critical pairs. In: Proceedings of 6th LICS, pp. 342–349 (1991). doi:10.1109/LICS.1991.151658
Nipkow, T.: Functional unification of higher-order patterns. In: Proceedings of 8th LICS, pp. 64–74 (1993). doi:10.1109/LICS.1993.287599
van Oostrom, V.: Developing developments. TCS 175(1), 159–181 (1997). doi:10.1016/S0304-3975(96)00173-9
van Oostrom, V., Raamsdonk, F.: Weak orthogonality implies confluence: the higher-order case. In: Nerode, A., Matiyasevich, Y.V. (eds.) LFCS 1994. LNCS, vol. 813, pp. 379–392. Springer, Heidelberg (1994). doi:10.1007/3-540-58140-5_35
Oyamaguchi, M., Hirokawa, N.: Confluence and critical-pair-closing systems. In: Proceedings of 3rd IWC, pp. 29–33 (2014)
Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational theories. JACM 28(2), 233–264 (1981). doi:10.1145/322248.322251
van Raamsdonk, F.: On termination of higher-order rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 261–275. Springer, Heidelberg (2001). doi:10.1007/3-540-45127-7_20
Regnier, L.: Une équivalence sur les lambda-termes. TCS 126(2), 281–292 (1994). doi:10.1016/0304-3975(94)90012-4
Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. JACM 20(1), 160–187 (1973). doi:10.1145/321738.321750
Rubio, A.: A fully syntactic AC-RPO. I&C 178(2), 515–533 (2002). doi:10.1006/inco.2002.3158
Sakai, M., Oyamaguchi, M., Ogawa, M.: Non-E-overlapping, weakly shallow, and non-collapsing TRSs are confluent. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 111–126. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_7
Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 127–136. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_8
Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix completion. In: Proceedings of 24th RTA. LIPIcs, vol. 21, pp. 287–302 (2013).doi:10.4230/LIPIcs.RTA.2013.287
Sternagel, C., Thiemann, R.: The certification problem format. In: Proceedings of 11th UITP. EPTCS, vol. 167, pp. 61–72 (2014). doi:10.4204/EPTCS.167.8
Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9_31
Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.) Programming of Future Generation Computers II, pp. 393–407. North-Holland Publishing, North Holland (1988)
Toyama, Y., Oyamaguchi, M.: Church-Rosser property and unique normal form property of non-duplicating term rewriting systems. In: Proceedings of the 4th CTRS withDershowitz N., Lindenstrauss N. (eds.) CTRS 1994. LNCS, vol. 968 (1995). doi:10.1007/3-540-60381-6_19
Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_38
Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. JAR 54(2), 101–133 (2015). doi:10.1007/s10817-014-9316-y
Acknowledgments
We thank Sarah Winkler for contributing code and expertise related to AC termination and AC critical pairs.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nagele, J., Felgenhauer, B., Middeldorp, A. (2017). CSI: New Evidence – A Progress Report. In: de Moura, L. (eds) Automated Deduction – CADE 26. CADE 2017. Lecture Notes in Computer Science(), vol 10395. Springer, Cham. https://doi.org/10.1007/978-3-319-63046-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-63046-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63045-8
Online ISBN: 978-3-319-63046-5
eBook Packages: Computer ScienceComputer Science (R0)